This document cannot be used, copied or given without the company s permission

n° LM2-FDL-1-001

Ind E UK Version Visa O Date 21/01/2010

WorldFIP Tools library
FipEngine

version 1.0 for LINUX

User manual

B2

Author

|.Lanteri

Controller

‘ TECHNOLOGIES

35, Rue Tournefort - 75005 Paris - France

Document History

Index Date Page Description
A 09/16/1998 | All Creation of the document
B 02/16/2000 | All Updated for version 1.4
C 07/12/2000 |7to 8 Modification of the setup program
D |08/30/2005 |All Updated for version 2.1
E 01/21/2010 | Al Linux adaptation version 1.0

CONTENTS

1. WORLDFIP TOOLS LIBRARY FIPENGINE OVERVIEW..........coeecceierremnnneenes 6
1. 1. INTRODUCTION.coeimcciasarirrrrrrrsnnmmsssssssssss s e e e e e e s s nnssssssssssssssseemrnrsnnnnsnsssssssssnsnnssssnnasssnes 6
1.2. SOFTWARE AND MATERIAL REQUIRED..........o e r e 8
1.3. FIPENGINE COMPONENTS...... .ot sssssssssssssssssssns 8

2. GENERAL INFORMATION FOR USING FIPENGINE FUNCTIONS.........cccccoovrrremnneen 9
2.1. FOR OLDER WINDOWS VERSION USERS.........cccittimecrsnnnsserrresssesmsss s s s s mssssesnnses 9
2.2. SEQUENTIAL AND MULTI-THREADED MODES..........ciiiiiriie s 9
2.3. START AND STOP LIBRARY.ccttttmmmmmmmmimimiiriiniininsssssssssssssssssssssssssssssssssssssees 1"
2 B /N 3 4 = I 12

2.4.1. PERIODICAL VARIABLES. ..ottt e et e eaeaeaas 12
2.4.2. APERIODICAL VARIABLES.t 12
2.4.2.1. How to transmit an aperiodical variable..................ccccooevemiiieiiiiiiiieeiiiiieeeeiaeaa 12
2.4.2.2. How to receive an aperiodical variable.....................cveeeiiieriieieiieiiiiieaieiiiieeaaen, 12
2.5. MESSAGES..........ooiiiiiiiiiiiiiiiri s r e e e e e rnn e n e e e nnnnn 13
2.5.1. HOW TO TRANSMIT AMESSAGE........coi i 13
2.5.2. HOW TO RECEIVE MESSAGE.........ccoo it eeeeeeanns 14
2.6. HANDLING EVENTS........oeiiiiiiininsrrs s s s s s s s s s s mmmsss s s s s nnmmnns 14
2.6.1. PREDEFINED EVENTS. ... e e e e e e s 15
2.6.2. EVENT DEFINITION. ..ottt ettt e e e e e e e e e e e e e e e eeaannnaeeaeeennes 16
2.6.3. EVENT READ. ...ttt ettt e e e e e e e eaa e e e eeeennes 16
2.7. HANDLING THE BUS ARBITRATOR........cccoiiiiiiiiissssssssssssssssssss s s s sssnnns 16
2.7.1. BUS ARBITRATOR STATES ..ottt e e et e e e e eeennnns 17
2.7.2. PROGRAMMING THE BUS ARBITRATOR.......uuuttiiiiiiiiiiiieiiieeeeeeaeaa e e e e e e e e e e e eeeeees 19
2.7.3. SIZE OF BUS ARBITRATOR INSTRUCTIONS IN BOARD MEMORY.........cccceeeeee. 19

2.7.4. EXAMPLE OF PROGRAMMING THE BUS ARBITRATOR......ccoeiiiiiiiiieeee e 20

2.7.5. FORMAT OF THE BUS ARBITRATOR PROGRAMMING FILES...........cccccceeiiiinnn. 21

2.8. HANDLING THE COMMUNICATION MEDIUMS.........oooiiiimemrrrnrnsssssssss s sssnsennns 21
2.8.1. STATUS BYTE FORMAT ...ttt e e e e et e e e e e e e as 21
2.8.2. AVAILABLE COMMANDS....... e ittt e e e e e e e e eea e e as 22
2.8.3. COMMUNICATION MANAGEMENT ...ttt 22

D R B B g To] o L= T 22

2.9. DEFINITIONS, ERROR CODES.........cccciimiriinie s sssss s sssss s sssssss s s s s s 23

3. FIPENGINE FUNCTION COMPLETE DESCRIPTION.........cccooimmrrrrnnsnssmennneneens 23

3.1. START/STOP CONFIGURATION........cmiiiiiiiinnnrrressssssmnns s s sssssssne s s s s ssmnn s s s ssssssnnnnnnes 24
3.1.1. START _FIP_ENGINE. ...ttt 24
3.1.2. STOP_FIP_ENGINE. ittt e e e e e e e e e e e e e e e eeeeeeeenennnnnnnnns 24
3.1.3. DOWNLOAD _CNF ...ttt e et e e e e e e e e e e e e s 25
3.1.4. START_COMMUNICATION.....coiiiiiiiiitii ettt e e e eeeaneennenes 25

3.2. VARIABLES.........eooiiieitr s n e 26
3.2, 1. FIP_READ _VAR ...ttt e e et e e e e e et e e e e e e ennnnnnes 26
3.2.2. FIP_WRITE_VAR . .ttt ettt e e e e e eeeaeaneannana 27
3.2.3. SEND_APERt 27

3.3 MESSAGES........co ot an e nn R R e r e e e e e e nea e nan 28
3.3 1. FIP_READ _IMSG ...ttt ettt e e e ettt e e e e e et e e e e e e e annnna 28
3.3.2. FIP_WRITE_MSG..... .ottt ettt e et e e e e et 29

B T T N R 31
K2R Sy T S T Y | PRSP 31
3.4.2. READ _EVENT ...ttt ettt e ettt e et bt b s 31
3.4.3. DEF_VAR _EVENT ...ttt ettt e e e e e e eeeas 34

3.5. BUS ARBITRATOR....... .t s s s me s s mnn e s 34
3.5.1. BA_PROG. ...ttt e e e e e e e n e 34
3. 8.2, ST AR B A ettt e bt e e e et e e e e e e 36
3. 0.3. ST OP B A bbb 36
3.5.4. CONTINUE_BA. ..ottt e e e e e e e e e e 36

3.5.5. BA_REPORT ... e 37

3.5.8. CHANGE_BA ..o 37
I T (010 =Y U] X3 1 (o) N =00 39
3.8.1. PURGE ... vt eee e ee e e e e s s s e et e e e e e s eeseee st e s ees e e ee e 39
3.6.2. FIND_IMSG_BY _ID.coeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeeseeeseeesee s eseees e es e eseeseeseeseee e seeses e 39
3.6.3. FIND_MSG_BY_NAME.oveoeeeeeeeeeeeeeeeeeeseeeeeseeeeeeseeeeseeeseeeseeeeeeseessee s sseees e 41
3.6.4. FIND_VAR _BY D .ooeoeeieeeeeeeeeeeeeee oo eeeeeeee e e s ee e e s 41
3.8.5. FIND_VAR_BY NAME. ... voeeoeeeeeeeeeeeeeeeeeeeeeeseesseeeeeeeseesseesseeeseeeseeeseeeseseseeeseeeeeeeeees 43
3.6.6. GET_BA_PROGRAM_ADDR........iveieeieereeeeeeeeeeeeeseoeseesseesseeesee s eeseeeseeseeseseseeene 45
3.6.7. GET_TRANSMISSION_QUEUE........oveeeeeeeeeeeeeeeeeeeseeeeeeeeseeeeseees s s s eeseee e 45
3.6.8. MEDIUM_CONTROL. ... seeeeeeeeseeeeeeeseeeseeeeeesee e s eee e 46
3.6.9. ERROR_MESSAGEoveoveeveeeeeeseeseeeeeeereeeeseeeeseeeseseseeeseess e eseeseseesesseeeeeeeseseee s 48
B. APPENDIX.....cucueecereeseressesessesssssssssssssssssssssssssssasssssssssssssssssssesssssasssssssassssessssasssssssssns 49
4.1. DETAILED FORMAT OF "CNF" FILES FROM FIPDESIGNER VERSION 3.................. 49
4.2. THE MULTI THREAD POSIX LIBRARY......o.eeeereeseeseeeseeesemssemessssessssssmaseasesessessssssens 53
4.2.1. CREATION/DESTRUGCTION.......ovoeeoeeeeeeeeeeeeeeeeeeeeeseeseeeeeeeeeseeeseseseeseee e seesesseeseseens 54
£.2.2. UTILITIES .o e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e s e s eseeeseeeseeeseseseeeseeeeeeeee e ees s seeeee e 55
4.2.3. THREAD SPECIFIC DATAeeoeeeeeoeeeeeeeeeeeeeeeeeeeeeseeeeeeeseeeeeeeseeseeeeeeee e s s s eneseen 56
B.2.8. ATTRIBUTES.oeoeeeeeeeeee et eeee e e e ee e ee e s een s 57
4.2.5. CONDITION VARIABLES.o.o oo eeeeeeeee e e eee e e s eeeeeseeeeseeseeeseeeseeee e 60
£.2.8. SEMAPHORES.ovoeeeeeeeeeeeeeeeeeeeeees e ee e e e ee e eese s ee e ee s eeseeeeeeeeee e eee e 62
£.2.7. SPINLOCKS. ... oot ee et e e eee e e s e s e s eseeeseeeseeeseeeseeeseeseeeenn 63
£.2.8. MUTEX ..ot eeeeeeeee e s s e eee s e e ee e s e s s ee e s e s e e eee e e eeee 64
4.2.9. READ-WRITE LOCKS. ... oo eeeee e eeeeeeeese s eeeeeeseeeseeeseeeseeeeeeesneseseseseees 68
4,210, BARRIERS.coveovee e eeeeeeeeeeeeeeeeeseeeseeeeeeeeeeeseeeseseseeeeeeeseeeseseseeeeeees e eseees s e eee e 71

4.3. THE PROGRAMS OF EXAMPLE...... .ttt sinsssss s snnssss s s s e sneennes 72

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010

-6

1. WORLDFIP TOOLS LIBRARY FIPENGINE OVERVIEW

1.1. INTRODUCTION

The WorldFIP tools library FipEngine from HLP Technologies consists of a set
of functions designed to help you to write a WorldFIP application based upon a
PC/WorldFIP adapter on PCI bus (card named “PCI/FIP”). This library can be
used with Windows2000, XP. And now with Linux This document is about the
adapting of this library to Linux.
Functionalities at the FIP network level are the same under Linux and
Windows but the implementation is different and the Linux library can be used
with two different modes:
* Sequential mode: for seriial applications: one instruction follows the
previous.
* Multi-threaded mode: threads are running simultaneously.
This version supports the following functionalities:
» Configures your PC/WorldFIP adapter:
- WorldFIP objects (variables and messages);
— General communication parameters. This software is capable
of working in particular at the standard transmission rate of 31,25
kb/s, 1 Mb/s or 2,5 Mb/s.
= Enables you to program a bus arbitrator.
= Reads/writes periodical or aperiodical WorldFIP variables.
Transmits/receives periodical or aperiodical WorldFIP messages.
Handles events from the network.
Operates dynamically the bus arbitrator.
Handles communication medium (state and redundancy).

What's new with regard to the previous version:

= Configuration of the PC/WorldFIP adapter.
This library enables WorldFIP objects (variables, messages, events) to be
configured in the adapter's memory. These objects will be handled by your
application when the adapter is in the running state. The configuration is
downloaded from a specific file with "cnf" extension. This file can be created in
different ways:

— The user makes his own configuration file. The "cnf"

configuration file format is given in Appendix.

— The FipDesigner version 3 makes a "cnf" file under Windows

3.11 or 95.

— The FipDesigner version 4 makes a "cnf" file under Windows
95/98 or NT4/2000.

— The FipDesigner version 4.21 and later under Windows
2000/XP.

The library supports the use of any FipDesigner's version "cnf" file. In the
previous version of the library, you should use another software to download
the configuration in the adapter's memory.

This configuration is also called “local configuration” because it is local to the
used PC, by opposition to the distant configurations of the other WorldFIP
stations on the network.

. Search by name or by identifier.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h "‘p =
TECHNOLOGIES

01/21/2010

-7

The user handles variables or messages by their name or identifier
indifferently, once the configuration is downloaded in the PC/WorldFIP adapter.
Some tool functions are responsible for finding an object by its name or
identifier in the downloaded database.

" Bus arbitrator configuration and control.
The user can describe the bus arbitrator program using an ASCII file, which
format is given in 2.7.5 chapter, or with a “cnf’ configuration file. In this second
case, two bus arbitrator programs can be described, and you can toggle from
one to the other during communication.
This program is downloaded and you could operate it with some library
function.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TECHNOLOGIES

01/21/2010 -8

» Communication medium management.

The user can know the physical state of the communication at anytime. The
library indicates if there are reception or transmission errors, if the
communication channels are enable and the user can toggle from one medium
to the other.

The use of this manual implies that the user has already a good working
knowledge of WorldFIP standards, WorldFIP frame sequences and WorldFIP
time notions (promptness, refreshment, silence time, turn-around time).

1.2. SOFTWARE AND MATERIAL REQUIRED

Software:

= Linux Red Hat .Enterprise 5.3 (preferably its derivative Scientific Linux 5.3
from CERN and FermiLab)

= Kernel Version2.6.8.128.1.1.el5 (32 bits).

= PCIFIP driver for Linux from HLP Technologies (version 1,0)

Hardware

= PCI/FIP adapter card from HLP Technologies (versions 2.3 and further).

1.3. FIPENGINE COMPONENTS

The FipEngine library is delivered and installed along with the driver. For more
information, refer to the WorldFIP Tools installation guide under Linux.

The libFipEngine.so file is installed into the /usr/lib directory. The following files,
located into the install directory, are part of the FipEngine library.

- FipEngin.h: Header file for the FipEngine API functions.

- Sample programs with Makefiles and sources demonstrating the use of
the library.

- Documentation files like this file.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010 -9

2, GENERAL INFORMATION FOR USING FIPENGINE FUNCTIONS

2.1. FOR OLDER WINDOWS VERSION USERS

The functionalities offered by FipEngine are more practical than those
supported by the previous versions.

The following tips will make the use of the library easier:

. This version allows you to download the PC/WorldFIP adapter
memory with the WorldFIP configuration. The download functionality uses
files as source information. The file formats are given in this document.
There are two types of configuration files to download:
- Configuration file with "cnf" extension: it contains the general
variable and message WorldFIP configuration of your
application. The format is given in paragraph 4, Appendix. At
times, we may use the word "database" instead of
"configuration”.
— Bus arbitrator program ASCII file: it contains the instructions
sequence of the bus arbitrator program. The format is given in
paragraph 2.7.5.
The use of configuration files allows you to edit huge configurations more
easily. The FipEngine library could handle 4095 variables and 4096
messages, with the 128 kword memory PC/WorldFIP adapter.

" Each variable and message in this version has a name and an
identifier. All the functions handling this kind of objects need an "access
key" in parameter. You no longer need to calculate the access key of the
WorldFIP object, since this version offers some utility functions that find the
corresponding access key. One search per object is enough in your
application since the access key is not changed when there is no change in
the WorldFIP configuration.

" Now, there is only one function for transmitting a message and
another for receiving a message. Previously, you needed two functions for
each task, one for the message header, one for the message value.

The following paragraphs however describe some essential information for
using the library. We advise you to read this part before beginning your
application.

2.2. SEQUENTIAL AND MULTI-THREADED MODES

If the user wants to work in sequential mode with one or several cards, he
must use the set of FipEngine functions taking the card number in parameter.
This card number depends on the logical order in which the PCI bus detects a
PCIFIP card and belongs to the range 1-4. One (for the first plugged card) to
four (the driver can support up to 4 cards together).

Here is a sample of a sequential program for 2 cards:

DWORD result;
USHORT card1 = 1;

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TECHNOLOGIES

01/21/2010

-10

USHORT card2=2;

//Library Initialisation : mandatory

result = START_FIPENGINE(card1, FALSE);
if(result!= SUCCESS)

printf(ERROR_MESSAGE(result);
/IError b;';).éessing;
}
result = START_FIPENGINE(card2, FALSE);

/l Loading configuration from .cnf files..
result = DOWNLOAD_CNF(card1, " ./Station1.cnf "),

result = DOWNLOAD_CNF(card2, " ./Station2.cnf ");

/I Network connection.......
result = START_COMMUNICATION(card1);

result = START_COMMUNICATION(card2);

/[Diconnecting, freeing ressources and let the system clean,,,,,
result = STOP_FIPENGINE(card1);

result = STOP_FIPENGINE(card2);

In a multi-threaded program each card has its own program running in parallel
with the program of the others cards (or threads).

Your program must use the Pthread library compatible POSIX (Portable
Operating System for Computer Environment).

Here is a sample program for a function which could be a canvas for the
thread of a card of number | given as *arg parameter.

#include "FipEngin.h"
/[Thread function
void* FipEngine_func(void* arg)

DWORD result;
USHORT card =*((USHORT)arg);
UCHAR status;

Initialising library with card number and mode
result = START_FIPENGINE(card, TRUE);
if(result!= SUCCESS)

{

printf(ERROR_MESSAGE(result);

/[Error processing

char station[15];

sprintf(" ./Station%i.cnf, card);

/[Downloading the configuration from a .cnf file
result = DOWNLOAD_CNF_PTH(station);

..... /I Connecting the network
result = START_COMMUNICATION_PTH();

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010

-1

/[Diconnecting, freeing ressources and let the system clean
result = STOP_FIPENGINE_PTH();

}

It's to remark that START_FIPENGINE is the only function with the same
prototype in the two modes sequential or multi-threading. The first argument
specifies the card number and the second is a boolean. If TRUE, it means the
mode is multi-threading and if FALSE that the mode is SEQUENTIAL.

All the FipEngine functions for the multi-thread mode are prefixed by _PTH
except START_FIPENGINE.

If you work with two cards you must create the two threads in the main process
in the following way:

#include <pthread.h>

DWORD result;

pthread_t thread_ID1, thread_ID2;

USHORT card1=1;

USHORT card2 = 2;

result= pthread_create(&thread_ID1, NULL, FipEngine_func,(void*)&card1);
result= pthread_create(&thread_ID2, NULL, FipEngine_func,(void*)&card2);

If the create call succeeds, each thread begins then its execution.
Multi threaded programming is always tricky and you will find a resume of the
POSIX pthreads library functions in appendix.

2.3. START AND STOP LIBRARY

Two functions are needed to allocate and release objects used by the library.
The start function START_FIP_ENGINE() must be called before all other
library function. When the start function has been called, you need call the stop
function STOP_FIP_ENGINE() at the end of your application to release the
allocated resource.

After a successful start library function, you must configure your PC/WorldFIP
board with the WorldFIP parameters that your application will use. The
DOWNLOAD_CNF() function has been designed for this task. It downloads
the configuration needed by the PC/WorldFIP board to be a communicating
WorldFIP device. This configuration was read from the file whose name is
given by the function parameter. The downloaded configuration contains the
general WorldFIP parameters, the variable parameters and the message
parameters. In the following paragraphs, the downloaded WorldFIP
parameters will be indifferently called "configuration", "local configuration" or
"database", "local database".

The board is now configured but not started. The user calls the
START_COMMUNICATION() function to have a real communicating WorldFIP
device.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TE!

01/21/2010

CHNOLOGIES -12

2.4. VARIABLES

Whatever type the variable is, periodical or not, the mechanism is the same to
read or write a variable. When the PC/WorldFIP adapter is configured and
running, it uses a memory buffer (call local buffer) for each variable in which it
stores the information to be produced on or to be taken up from the bus. The
library read and write variable functions access to this local buffer.

The limited duration status, promptness and refreshment, are calculated since
a new value has been written to the local buffer. These are status’s which
inform the consumers about the validity of the variable received. The
asynchronous refreshment status is generated by the producer of a variable. It
is defined by a maximum refreshment duration Tr The status is transported on
the bus after the data in the RP_DAT_XX frame, so that the consumer is
informed of the status of the producer.

The asynchronous promptness status is generated by the consumer of the
variable. It is a local qualifier and is defined by the maximum promptness
duration Tp.

2.4.1. PERIODICAL VARIABLES

For read and write variables, you only need to call FIP_READ_VAR() and
FIP_WRITE_VAR() with the accurate access key. This is given by the utility
functions, FIND_VAR_BY_NAME() or FIND_VAR_BY _ID().

Note: the access key does not change if the WorldFIP variable configuration
does not change. One call per variable to these utility functions is therefore
sufficient for your entire application.

2.4.2. APERIODICAL VARIABLES

2.4.2.1.

2.4.2.2.

How to transmit an aperiodical variable

Aperiodical variable transmission is carried out in two steps:
= First, the variable value must be written to its local buffer with the
FIP_WRITE_VAR() function.
= Second, you must perform an aperiodical variable transmission
request. This will be done with the SEND_APER() function. The request
will be transmitted to the bus arbitrator, that will operate the variable
transmission in his first free aperiodical window.

[l Be careful, when using this kind of transmission. You must have a
produced variable in your WorldFIP configuration, which is aperiodical variable
transmission request authorised. This variable will transmit the transmission
request to the bus arbitrator.

[] When the request is transmitted onto the bus, an event is generated, and
you must read it with the READ_EVENT() function for freeing the event
queue.

How to receive an aperiodical variable

The wuser may read the local buffer value at anytime with the
FIP_READ_VAR() function. In aperiodical receiving, the difficulty is knowing at

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010

-13

which moment the local buffer has been refreshed by the new value. For
asynchronous receiving, the user must define a variable receiving event, so
that the user can be informed that a new value is available in the local buffer.

The DEF_VAR_EVENT() function allows the user to define a variable
receiving event. On receiving, an event is pushed onto the event queue. The
IS_EVENT() function specifies whether an event exists or not. If there is at
least one event in the event queue, the user must pop it with READ_EVENT(),
and verify the event report to find a receiving event. The event number must
be the same as those specified with DEF_VAR_EVENT().

The DEF_VAR_EVENT() function does not care if the variable is periodical or
not. Therefore, if the identifier's variable is enclosed in the bus arbitrator
periodical window, the user will receive periodical events, with possibly
aperiodical events added.

If you would only like an asynchronous event, be sure not to take a variable
identifier enclosed in a periodical window. (see 2.6 HANDLING EVENTS for
more information on events).

2.5. MESSAGES

A message is a data field composed of up to 250 bytes'. To ensure
communication with messaging traffic, you must add some information to a
message header. This header includes the following fields:

= Destination address;

= Source address.

The message response frame contains this header and the data field. For

WorldFIP, an address is defined with three bytes:
= Two first bytes form an identifier. The source or destination device
must have a variable configured with this identifier value in its database.
= The third byte is the segment number of the source or destination
device. The WorldFIP network is composed of several segments with 32
devices max. each. If the user has only one WorldFIP segment, the
segment number is 0.

2.5.1. HOW TO TRANSMIT A MESSAGE

You only need one function for mesage transmission, FIP_WRITE_MSG().
Several arguments are required for this function:

" The transmission type: it may be acknowledged or not. A non-
acknowledged message may be broadcast to several destination devices.
These devices must have a variable in their database, authorised to
receive messages, with the same identifier as the message destination
address field. This broadcast option is strictly forbidden for acknowledged
messaging services.

. The channel number: this is the transmission queue number. The
messaging service is totally asynchronous so must be managed by a
queue. The library offers 9 transmission queues and one receiving queue
(this is the event queue), for messaging services. For transmission, you
may choose a channel number value from 0 to 8.

1250 bytes max in versions 1.X,

this length will be raised up to 256 bytes in future versions.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010

-14

2.6.

— Queue n°0 is only used for the aperiodical messaging
service. In this case, the user must have a produced variable
with aperiodical message transmission authorised and the
same channel number (i.e. 0) in its database. The queue will be
created on this variable at the device start up and the
transmission request will be send to the bus arbitrator on the
variable response frame. (Note: this variable is not necessarily
the message source identifier).
— Queues n°1 to 8 are used for periodical messaging service. If
one number is chosen, you must have a variable (produced or
not) with periodical message transmission authorised and the
same queue humber, in the device database. When you choose
a number and a variable for the queue, they cannot be reused for
the other queues. The queue will be created on the variable.
Contrary to the aperiodical case, there is no request to transmit to
the bus arbitrator, since the ID_MSG frame is already included in
the periodic window.

Note: the channel number will be named "channel number" or "transmission

queue number" indifferently in the following paragraphs.

. The event number: an event is generated when the message is sent
onto the network. You may choose a number from 1 up to 251. 0 means
"no-event".

. The message length: a variable has a fixed length. For a message,
the length may grow from 1 to 250 bytes. It becomes a parameter for
transmission.

2.5.2. HOW TO RECEIVE MESSAGE

If the message destination identifier is the same as a variable identifier
configured with receiving message authorised, an event is generated and is
pushed onto the event queue when the message has been received.

You must use the IS_EVENT() function (usually in a loop) to see whether or
not an event is present.

When there is at least one event, you must use the READ_EVENT() function
to pop up and read the event. The event queue contains up to 32 events, after
the events are lost. With READ_EVENT(), you can check the event report to
find a receiving message event. When it has been found, you have an access
to other information needed for reading the message, particularly the access
key of the received message.

When the access key is known, you need only one function to read the
message - FIP_READ_MSG().

HANDLING EVENTS

The events allow access to certain information regarding the running state of
the communication. Usually, the event can be activated upon frame
transmission or receiving.

Events that the user may meet are the following:
= Transmit a variable or message content.
» Receive a variable or message content.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h ,_p =
TECHNOLOGIES

01/21/2010 -15

= Send an aperiodical transmission variable request (urgently or not)
to the bus arbitrator.

» Interrupt the bus arbitrator program with the SUSPEND()
instruction.

The event are enumerated with a number from 0 up to 255. Among these
values, some number are reserved, and the rest are user-defined. A user-
defined number can have a value from 1 to 251.

2.6.1. PREDEFINED EVENTS

Some events are predefined with the corresponding number reserved:
= 0, this number means no-event.
= 252, this number means that the user has sent an aperiodical
variable transmission non urgent request to the bus arbitrator.
= 253, this number means that the user has sent an aperiodical
variable transmission urgent request to the bus arbitrator.
= 254, this number means receiving a message.
= 255, reserved, without meaning.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010

- 16

These predefined events are automatically generated when they occur. Other
events are also automatically generated when they occur, but the event
number is user-defined:
* message transmission, the event number is given when the user
calls the FIP_WRITE_MSG() function.
= Bus arbitrator program interruption, the event number is given
when you use the SUSPEND instruction.

2.6.2. EVENT DEFINITION

There are two kinds of events not automatically generated:
= Variable transmission,
= Variable receiving.

If the user wishes to generate these kind of events, he must define the
corresponding event with the DEF_VAR_EVENT() function at the beginning of
his program. The associated number is user-defined.

2.6.3. EVENT READ

When an event occurs, it is pushed onto the event queue. The event queue
contains up to 32 events, after the events are lost. The queue is FIFO type.
The user can find out if an event has been pushed with the IS_EVENT()
function. The user must read all the events with the READ_EVENT() function
to pop them. This is usually done with an independent loop containing these
two functions.

READ_EVENT() function offers a complete event report in return. (See
paragraph 3.4.2)

2.7. HANDLING THE BUS ARBITRATOR

This version of the library allows you to describe the bus arbitrator program:
" with a ASCII file "ba". The BA_PROG() function download this file
onto the PC/WorldFIP board memory.
" with the two programs contained in the configuration file "cnf". They
are downloaded with the DOWNLOAD_CNF() function.

Programming the bus arbitrator involves describing the sequence of
elementary transactions in the macrocycle. During a running state, the bus
arbitrator loops infinitely on this macrocycle. The "instructions" allow you to
describe the elementary transactions in the macrocycle. The "commands"
control the macrocycle. The library offers four commands for your bus
arbitrator:

= Start up the bus arbitrator, START_BA(). If there is already a bus

arbitrator on the network, the local bus arbitrator goes to the IDLE state

(bus arbitrator redundancy).

= Stop the bus arbitrator, STOP_BA(). The local bus arbitrator stops

all activity. Nothing is sent on the network.

= CONTINUE_BA() function, allows a bus arbitrator to go from a

suspend state to a running state.

= CHANGE_BA() function, allows to change the bus arbitrator

program when the current macrocycle is completed.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -17

2.7.1. BUS ARBITRATOR STATES

The bus arbitrator is not only running or stopped, there are in fact eight
different states:

= STOPPED: the bus arbitrator is not yet started, nothing is sent on
the network;

= STARTING: the bus arbitrator is starting up, after a calling the
START_BA() function. At this time, the local bus arbitrator search if
another bus arbitrator broadcast on the network.

= |DLE: the local bus arbitrator has detected another bus arbitrator
already broadcasting. Nothing is sent on the network by the local bus
arbitrator, it will automatically switch to the SENDING state when the
other bus arbitrator stops broadcasting and if the bus arbitrator election
procedure is successful.

= PENDING: the bus arbitrator is suspend after a SUSPEND
instruction. In this state, idle frames are transmitted. With the
CONTINUE_BA() function, the remainder of the program is resumed.

= WAITING: the bus arbitrator waits for the specified time elapse. This
duration is specified in the WAIT instruction. In this state, idle frames are
transmitted.

= SENDING: the bus arbitrator broadcasts ID DAT and ID_MSG
frames in its periodic window.

= APER _WND: the bus arbitrator broadcasts the aperiodical variable
traffic until the specified time has elapsed. This duration is specified in
the SEND_APER instruction. If the specified time is too short, the
remaining traffic will be processed in the next aperiodical variable
window. If there are no more aperiodical variables left to broadcast, idle
frames are transmitted until the specified time.

= MSG_WND: the bus arbitrator broadcasts the aperiodical message
traffic until the specified time has elapsed. The duration is specified in
the SEND_MSG instruction. If the specified time is too short, the
remaining traffic will be processed in the next aperiodical message
window. If there are no more aperiodical messages left to broadcast,
idle frames are transmitted until the specified time.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h |

01/21/2010 TECHNOLOGIES -18

Status machine of the bus arbitrator

| tﬁ START_BA
mpossible command

(command)

Detection of %Send 3 padding
carrier frames

Time out on duration
of bus arbitrator election W

window

SEND_MSG
instruction STOP BA
(command)

End of message
service window

(instchtion)

APERIODICAL

Figure 1: the different states of a bus arbitrator

These states are closely dependent on the bus arbitrator program instructions.
A BA_REPORT() function, allows you to access the current state of the local
bus arbitrator. This function is important in the management of your bus
arbitrator, since you must respect the state machine shown in Figure 1. Thus, if
the bus arbitrator is STOPPED, you cannot apply the STOP_BA command; if it
is in a state other than STOPPED or STARTING, the START_BA command is
possible.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010 -19

2.7.2. PROGRAMMING THE BUS ARBITRATOR

FipEngine supports a set of instructions which allows the user to program the
bus arbitrator cycles.

The instructions are as follows:
= |D_DAT(identifier): Sends an ID_DAT frame of the identifier given as
a parameter on the bus.
» |ID_MSG(identifier): Sends an ID_MSG frame of the identifier given
as a parameter on the bus.
= SEND_MSG(date): Processes the aperiodical messages requests
up until the date limit given as a parameter. If all the requests are
processed before the date limit, SEND_MSG ends and the program
jumps to the next instruction.
= SEND_APER(date): Processes the aperiodical transmission
requests up until the date limit given as a parameter. If all the requests
are processed before the date limit, SEND_APER ends and the
program jumps to the next instruction.
= SUSPEND(event number): This is a special instruction which places
the bus arbitrator in a "suspended" state when it is encountered in a
program. When the bus arbitrator encounters this instruction it sends
back the event number given as a parameter to the event queue. This
instruction is designed to synchronise the bus arbitrator on an external
clock in order to authorise very long cycles. The bus arbitrator program
can be restarted with the help of the CONTINUE_BA command. It is
possible to use SUSPEND as a stopping point in the bus arbitrator
sequence.
= WAIT(date): Sends idle frames on to the bus up until the date given
as a parameter.

Warnings!
> The function parameters are expressed in
hexadecimal.
> The date limit is expressed in "slot time"

and in hexadecimals. The maximum acceptable value is OxOfff. Any value
higher than this is simply masked using an AND operation with the
constant OxOfff. For more information about slot time value, the user can
refer to STATION structure, field "tslot" in the Appendix. If the configuration
file (cnf file) originates from FipDesigner software, the user can use this
software to find out the slot time value for his configuration.

> All timers are reset at the beginning of each
macrocycle.

2.7.3. SIZE OF BUS ARBITRATOR INSTRUCTIONS IN BOARD MEMORY

The BA PROG() function may not have enough memory space for the
downloaded program. The memory size reserved for the bus arbitrator is
adjustable. If your configuration originates from FipDesigner 3 software, you
may adjust this parameter in the "general" menu. Otherwise, the user could
increase the "ba" value inside the STATION structure. (see Appendix for
STATION structure). It is therefore useful to know the amount of space taken
up in the memory by each instruction.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h ,_p =
TECHNOLO

01/21/2010 GIES -20

INSTRUCTIONS Number of words(16 bits)

ID_DAT? 3+2

ID_MSG 3

SEND MSG 1

SEND APER 1

NEXT_MACRO2 1

WAIT 1

SUSPEND 1

Each bus arbitrator sequence contains a minimum of one NEXT_MACRO2
instruction. This instruction must be added at the end of each macrocycle. This
is done automatically when programming the bus arbitrator using “cnf” files
and must be done manually when using an ASCII file.

2.7.4. EXAMPLE OF PROGRAMMING THE BUS ARBITRATOR
Program the following macro cycle:

Bus charge %

100 %

E Aperiodical windoy

C
@ Message senvice

B B
% Fadding

A A A A)
A, B, C are the identifiers t

This cycle will be programmed by the following bus arbitrator sequence:

ID_DAT(A);
SEND_MSG(3*T/12);
WAIT(3*T/12);
ID_DAT(A);
ID_DAT(B);
ID_DAT(C);
ID_DAT(A);
SEND_APER(8*T/12)
WAIT(9*T/12);
ID_DAT(A);
ID_DAT(B);

WAIT(T);

T is the length of the macro cycle. The time is expressed in multiples of the
time slot. This is the shortest programmable duration.

A periodical message is managed in the same way as the transmission of a
periodical identifier (for example ID_DAT(A)). The instruction ID_MSG (A) is
therefore used. A is the identifier of the variable being used as an emission
support for the message concerned (source identifier).

2 The first instruction ID_DATXX encountered for a given identifier, takes up five words in the memory. Those
which follow take up 3 words.

FIPENGINE - USER MANUAL

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010 - 21

2.7.5. FORMAT OF THE BUS ARBITRATOR PROGRAMMING FILES

The bus arbitrator programming files are simple text files. Their format is as
follows:

Free comment zone BA_ PROG() function interprets the files between

NEXT_MACRO_2() must be added at the end
before the keyword END.

BEGIN the keywords BEGIN and END.
ID_DAT(XXXX) The authorised instructions are those in
ID:DAT(YYYY) paragraph 2.7.2. The supplementary instruction

SEND_MSG(XXXX) llr’:]aicr;gcz:rrrélse BA_PROG() of the end of the
NEXT_MACRO_2() ycte.
END

This document may noyt be used, copied or redistributed without autherisation-of H-P-Technotogies

2.8. HANDLING THE COMMUNICATION MEDIUMS

2.8.1. STATUS BYTE FORMAT

In spite of its robustness, the WorldFIP protocol and the connected material
could have communication errors at the physical level. The library can know
the state of the communication thanks a status byte. Its format is the following:

BEf B B B4 B3z B2 EB1 EBEO

significant Er2 |Erl |Ew2 | BEwl | Et2 | Et1 | Va2 | vall
no significant

Feception error Wedium 1
Medium 2 walid
Feception errar Medium 2
tWedium 1 valid

Watchdog errar Transmissian errar
Medium 2 49— L Medium 1
Watchdog errar Transmission errar
Medium 1 44— L Medium 2

Figure 2: status byte description

The different bits should be interpreted as follows:

= The ErX bits indicate reception errors. It could be a carrier loss, a
manchester code error or a cyclic redundancy code error.

» The EwX bits indicate watchdog errors. It is a transmission error,
activated when the station transmission is longer than allowed.

» The EtX bits indicate all other transmission errors. It could be a bit which
is too long, a transmission level too high or too low, the medium missing.

= The ValX bits indicate if the X channel communication is activated.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010

-22

2.8.2. AVAILABLE COMMANDS

The user can use several commands to pilot the line drivers in order to
manage the medium access. It is done with the MEDIUM_CONTROL()
function. This function needs a control code, and returns the communication
status byte after the command is complete.

The function supports the following commands:
»= 0: to obtain the communication medium status byte.
= 1: to erase the reception and transmission errors (only the ErX and
EtX bits are concerned).

2: to reset medium 1 line drivers.

3: to reset medium 2 line drivers.

4: to enable medium 1 and disable medium 2.

5: to enable medium 2 and disable medium 1.

6: to enable both medium 1 and 2.

7: to run the test mode (loops transmission on reception).

The user can also reset all the PC/WorldFIP adapter components, and
therefore of the line drivers as well.

2.8.3. COMMUNICATION MANAGEMENT

2.8.3.1.

Principle

To proceed with communication, the user must have a communication medium
enabled (ValX bit to 1), with all error bits cleared. During startup, the user must
call the START_COMMUNICATION() function to initialise and enable a
medium (or both).

As a general rule, it is a good practice to supervise the communication state.

When there is no enabled channel, the test mode (local loop of transmission
on reception) is automatically selected. To start communication the user must
enable at least one channel.
It is done at start-up by the START_COMMUNICATION() function. It proceeds
with:

= areset of the line drivers (commands 2 et 3),

= erasing the transmission and reception errors (command 1),

= enabling the two channels (command 6).
When this function is complete, the two mediums are enabled.

When the two mediums are enabled, the frames are transmitted on both of
them. In so far reception is concerned, both channel are watched. The channel
which is activated is the channel which first receives data. When data are
received at the same time on both channels, channel one is activated.

When a transmission error occurs (EtX bit), the concerned channel is disabled
at the end of the current frame. The transmission on the other line is not
concerned. If only one medium is enabled when a transmission error occurs, it
is not disabled. The EtX bit will remain set as long as command1 is not applied
(CLEAR ERROR).

When a watchdog error occurs (EwX bit), the concerned line is automatically
disabled. If the error condition stops, the concerned channel automatically

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TECHNOLOGIES

01/21/2010

-23

2.9.

3.

restarts but the EwX bit will remain set as long as commands 2 or 3 are not
applied or the START_COMMUNICATION() function executed.

The reception errors have no incidence on the medium activation state.
Nevertheless the ErX error bits must be cleared.

DEFINITIONS, ERROR CODES

The library header file, "FipEngine.h", contains the export function prototypes
and a set of definitions useful for the programming.

The definitions cover the following subjects:
= Bus arbitrator states;
= Events handling;
= Error codes.

The meaning of each error code is indicated with the comments. Notice that
the error code returned by the functions may be a system error code.

The utility function ERROR_MESSAGE() may be used to get the associated
error message. This function manages too the system error codes.

FIPENGINE FUNCTION COMPLETE DESCRIPTION

Each function is described with the same format:
= Function prototype.in sequential and multithread modes.
= Function parameters.
= Return value.
= Utility.

The following formalism is used:

DWORD <= unsigned long,

UINT < unsigned int,

USHORT <« unsigned short,

UCHAR < unsigned char,

BOOL < int, 0 means FALSE, # 1 means TRUE.

A byte is composed of eight bits, b7 is the MSB, b0 the LSB.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TECHNOLOGIES

01/21/2010 -24

3.1. START/STOP CONFIGURATION

3.1.1. START_FIP_ENGINE

" Prototype : DWORD START_FIP_ENGINE (USHORT card, BOOI
ifThreading) ;

. Parameters: this function has two parameters:
— card: the card number from one to four.
- IfThreading: if TRUE, the program is a multithread one and if
FALSE, the program is sequential.

" Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: starts and allocates the objects used by the library. This
function must be called before all other library functions. The allocated
objects must be freed by the STOP_FIP_ENGINE() function. This is the
only function in library with ERROR_MESSAGE which has identical
prototypes for the two modes sequential and multithread. For all other
functions, the sequential mode prototype needs the card number as
argument and all the multithread mode functions are prefixed with _pth.

3.1.2. STOP_FIP_ENGINE

. Prototype (multithread): DWORD STOP_FIP_ENGINE_PTH () ;
. Prototype (sequential): DWORD STOP_FIP_ENGINE (USHORT

card) ;
" Parameters: this function has one parameter in sequential mode.
— card: the card number in the range one to four.
. Return value: unsigned integer (32 bits) of which the value may be a

system error (if b29 is 0) or a library error (if b29 is 1). In the latter case, the
possible return values are given by the FipEngine header file. A null value
indicates success.

" Utility: stops and frees the objects used by the library. This function
must be called after all other library functions.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TE!

01/21/2010 CHNOLOGIES -25

3.1.3. DOWNLOAD_CNF

. Prototype (multithread): DWORD DOWNLOAD_CNF_PTH(char*
PathToConfigFile) ;

. Prototype (sequential). DWORD DOWNLOAD CNF(USHORT card,
char* PathToConfigFile) ;

. Parameter:

- PathToConfigFile: a pointer to a character string that contains the
complete path name of the configuration file. This file is a
FipDesigner "cnf" file. It may be equally well be a FipDesigner 3
format (that is given in the Appendix) or a FipDesigner 4 format.

— (sequential mode) card: the card number in the range one to
four.

" Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: this function downloads the configuration needed by the
PC/WorldFIP board to be a communicating WorldFIP device. This
configuration is read from the file whose name is given in the function
parameter. The downloaded configuration contains the general WorldFIP
parameters, the variable parameters and the message parameters. In
addition to downloading configuration, this function starts up the
communication part of your PC/WorldFIP board, so at the end of this
function, your board is a real communicating WorldFIP device.

3.1.4. START_COMMUNICATION

. Prototype (multithread): DWORD START_COMMUNICATION
_PTH();
" Prototype: DWORD START_COMMUNICATION (USHORT card) ;

" Parameters: this function has no parameters, only:
(sequential mode) card: the card number in the range one to four.;

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

. Utility: this function allows to a configured board to start WorldFIP
communication.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TE!

01/21/2010 CHNOLOGIES -26

3.2. VARIABLES

3.2.1. FIP_READ_VAR

. Prototype (multithread): DWORD FIP_READ_VAR_PTH (USHORT
AccessKey,

void* pValue,

UCHAR* pPrompt) ;
" Prototype: DWORD FIP_READ_VAR (USHORT card, USHORT
AccessKey,

void* pValue,

UCHAR* pPrompt) ;
" Parameters:

— AccessKey: variable access key. This value may be given by a
previous call to the FIND_ VAR BY_ID() or
FIND_VAR_BY_NAME() functions. Only one call to these
functions in your application is sufficient since the access key
does not change.

— pValue: a pointer to a memory object allocated by the user. This
memory object is used to hold the data read (from 2 up to 128
bytes).

— pPrompt: a pointer to a byte used to hold the promptness status.
If bit b7 is set, the promptness status is required. In this case, bit
b5 is meaningful. Else if b7 is reset, bS5 has no meaning. If b5 is
set, the promptness status is TRUE, else FALSE.

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: this function allows the user to read the variable that has the
specified access key. The read value, at "pValue" address, is increased by
two or three bytes. In fact, the two first bytes read are always the
PDU_TYPE and PDU_LENGTH bytes of the frame. The following read
bytes are the value of the variable, but if the refreshment status is required,
one more byte is appended - the refreshment status byte. The user knows
two useful types of information from the utility functions
FIND_VAR_BY_XXX():
- If the status (refreshment or promptness) is required,
- the length of the variable value (note: the PDU_TYPE,
PDU_LENGTH and refreshment bytes are not included in the
length value): it may be up to 125 bytes if a refreshment is
required, or up to 126 bytes if refreshment is not required.
The format of the refreshment status byte is the following:
— When b2 is set, the variable value is a valid value i.e. the
value at the consumer level (in the local buffer) has been written
from the network at least once.
— In case of b2 set, b0 is meaningful: if it is set, the refreshment
status is true.
— The other bit values have no meaning.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES - 27

3.2.2. FIP_WRITE_VAR

. Prototype (multithread): DWORD FIP_WRITE_VAR_PTH(USHORT
AccessKey, void* pValue) ;
. Prototype: DWORD FIP_WRITE_VAR (USHORT card, USHORT
AccessKey, void* pValue) ;

" Parameters:

— AccessKey: variable access key. This value may be given with a
previous call to the FIND_VAR_BY_ID() or
FIND_VAR _BY_NAME() functions. Only one call to these
functions in your application is sufficient since the access key
does not change.

— pValue: a pointer to a memory object allocated by the user. This
memory object is used to hold the user data to be written (from 1
up to 125 or 126 bytes according to the refreshment byte: 125 if
refreshment is required, 126 if not required).

" Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: this function allows the user to write the value of the variable
that has the specified access key.

3.2.3. SEND_APER

. Prototype (multithread): DWORD SEND_APER_PTH (UCHAR
Mode, USHORT Identifier) ;

. Prototype: DWORD SEND_APER (USHORT card, UCHAR Mode,
USHORT Identifier) ;

" Parameters:
- Mode: urgent sending if mode # 0 or normal sending if mode = 0.
- Identifier: identifier of the aperiodical variable that will be
transmitted.

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: this function allows the user to send a request for an
aperiodical variable transmission. This request have two levels of priority
depending on the "Mode" parameter value. The necessary condition to
send the request to the bus arbitrator is to dispose one produced variable
with aperiodical variable transmission request authorised in the local
database. When the bus arbitrator receives the request, it pushes the
request onto a queue. The variable transmission will be processed in the
next free aperiodical window of the bus arbitrator.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -28

3.3. MESSAGES

3.3.1. FIP_READ_MSG

. Prototype (multithread): DWORD FIP_READ _MSG _PTH (
USHORT AccessKey,

USHORT* pReceptionTime,
USHORT* pMsgLength,
USHORT* pDestld,
UCHAR* pDestSegment,
USHORT* pSourceld,
UCHAR* pSourceSegment,
UCHAR* pMsgContent) ;

. Prototype: DWORD FIP_READ_MSG (USHORT card,

USHORT AccessKey,
USHORT* pReceptionTime,
USHORT* pMsgLength,
USHORT* pDestld,
UCHAR* pDestSegment,
USHORT* pSourceld,
UCHAR* pSourceSegment,
UCHAR* pMsgContent) ;

] Parameters:

— AccessKey: access key of the received message. This key is
given by a previous call to the READ_EVENT() function.

— pReceptionTime: unused in this version, reserved for future
use.

— pMsglength: pointer to an integer that holds the read
message length (must be inferior or equal to 250).

— pDestld: pointer to an integer that holds the destination
identifier of the read message.

- pDestSegment: pointer to an integer that holds the segment
number of the previous destination identifier.

— pSourceld: pointer to an integer that holds the source
identifier of the read message.

- pSourceSegment: pointer to an integer that holds the
segment number of the previous source identifier.

— pMsgContent: pointer to a memory object allocated by the
user that holds the read message content (must be inferior or
equal than 250).

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

= Utility: read a received message. This function needs to know the access
key of the received message. This is given by a previous call to the
READ_EVENT() function.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -29

3.3.2. FIP_WRITE_MSG

. Prototype (multithread): DWORD FIP_WRITE_MSG_PTH (
UCHAR ChannelNb,

USHORT AccessKey,
UCHAR AckMode,
UCHAR EventNumber,
USHORT MsgLength,
USHORT Destld,
UCHAR DestSegment,
USHORT Sourceld,
UCHAR SourceSegment,
UCHAR* pMsgContent) ;

" Prototype: DWORD FIP_WRITE_MSG (USHORT card,

UCHAR ChannelNDb,
USHORT AccessKey,
UCHAR AckMode,
UCHAR EventNumber,
USHORT MsgLength,
USHORT Destld,
UCHAR DestSegment,
USHORT Sourceld,
UCHAR SourceSegment,
UCHAR* pMsgContent) ;

] Parameters:

— ChannelNb: number of the transmission queue that will be
used. If you wish the transmission to be successful, the following
conditions must be fulfilled:
1- There is at least one produced variable
2- This produced variable is authorised for message
transmission. The type, periodical or aperiodical
depends on the channel number you choose.
3- This variable is authorised with the same channel
number as the one specified here.
Note: One variable is needed and is sufficient for each
messaging type i.e. periodic and aperiodic.
The values available for "ChannelNb" are the following:
» 0: queue number for aperiodical message.
» 1 to 8: queue number for periodical message. Eight
queues are possible in periodical messaging.
— AccessKey: access key of the transmitted message. This
value is given by a previous call to the FIND_MSG_BY_ID() or
FIND_MSG_BY_NAME() functions. One call for your entire
application is sufficient since the transmitted message access
key does not change.
— AckMode: sending mode of the message. If AckMode = 0, it
is sent without acknowledgement. If AckMode # O, it is
acknowledged.
— EventNumber: event number that will be generated on
message transmission. The knowledge of this number is
important for finding the message sending report provided by the
READ_EVENT() function.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

h . —
‘ TECHNOLOGIES -30

— MsglLength: length of the message to be transmitted. It is
also the length of the memory object pointed to by pMsgContent.
— Destld: destination identifier of the message to be
transmitted.

— DestSegment: segment number of the previous destination
identifier.

- Sourceld: source identifier of the message to transmit.

— SourceSegment: segment number of the previous source
identifier.

- pMsgContent: pointer to a memory object allocated by the
user. This memory object holds the message content to be
transmitted and must be inferior or equal to 250 bytes.

" Return value: unsigned integer (32 bits) of which the value may be a
system error (if b29 is 0) or a library error (if b29 is 1). In the latter case, the
possible return values are given by the FipEngine header file. A null value
indicates success.

" Utility: if all parameters are right, the specified message is sent.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -31

3.4. EVENTS

3.4.1. IS_EVENT

. Prototype (multithread): DWORD IS_EVENT_PTH (BOOL*
plsEvent) ;
. Prototype: DWORD IS_EVENT (USHORT card, BOOL* plsEvent) ;

" Parameter.
— plsEvent: pointer to a boolean that will be affected by this
function. This parameter is set to FALSE if there is no event in
the event queue, and TRUE if there is at least one. In the latter
case, the user must read the present events with the
READ_EVENT() function to pop them.

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

. Utility: this function determines whether or not the event queue is
empty.

3.4.2. READ_EVENT

" Prototype (multithread): DWORD READ_EVENT_PTH (UCHAR*
pLifeTime,
UCHAR* pMsgSendingReport,
UCHAR* pType,
UCHAR* pEventNumber,
USHORT* pAdditionnalinfo) ;
" Prototype: DWORD READ_EVENT (UCHAR* pLifeTime,
UCHAR* pMsgSendingReport,
UCHAR* pType,
UCHAR* pEventNumber,
USHORT* pAdditionnallnfo) ;

" Parameters:

— pLifeTime: pointer to a byte containing the event life duration.
» 0, the event is temporary and will be not be generated
at the next occurrence.

» 1, the event is permanent and will be reactivated at
every occurrence.

- pMsgSendingReport: pointer to a byte that contains the

message sending report. This byte is meaningful when the event

number set in "pEventNumber" is the same as those set in

FIP_WRITE_MSG() parameter. In this case, the "pLifeTime"

parameter has no meaning. The values set in this byte are the

following:
» 0, messaging not acknowledged.
> 4, positive acknowledgement without retry.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

hip—

TECHNOLOGIES -32

» 8, no acknowledgement (positive or negative) after
retries.
» 12, positive acknowledgement after retries.
» 16, wrong RP_MSG_NOACK frame in transmission.
» 20, negative acknowledgement without retry.
» 28, negative acknowledgement after retries.
Note: you may use the header file definitions for the numerical
values stated previously.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -33

— pType: pointer to a byte that contains the event type. The
values set in this byte are the following:
» 0: aperiodical: A aperiodical variable transmission
request has been sent to the bus arbitrator. In this case,
the "pLifeTime" parameter has no meaning.
» 1: transmitted: a variable or a message has been sent
on the network.
»> 2: received: a variable or a message has been
received from the network.
» 3: bus arbitrator: The bus arbitrator has been
suspended (the local bus arbitrator sends idle frames). In
this case, the "pLifeTime" parameter has no meaning.
- pEventNumber: pointer to a byte that contains the associated
event number. Different possible cases:
» it may be a predefined event number (See paragraph
2.6.1),
» it may be a event that has been set with
DEF_VAR_EVENT() function,
» it may be a event that has been set with
FIP_WRITE_MSG() function,
» it may be a event that has been set with the
SUSPEND bus arbitrator instruction.
— pAdditionnalinfo: pointer to a byte that contains some
additional information. The values set in this byte are the
following:
» the number of the identifier contained in the
transmitted request if the event type is aperiodical,
» the access key of the variable or message associated
with the event if the event type is received or transmitted.
The access key is necessary for aperiodical reading with
FIP_READ_VAR() or FIP_READ_MSG() functions.
» the instruction address of SUSPEND in PC/WorldFIP
board memory if the event type is a bus arbitrator. This
address is necessary to resume bus arbitrator with
CONTINUE_BA() function. Note: this address must be
modified to become a CONTINUE_BA() parameter (see
paragraph 3.5.4).

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: read and pop an event from the event queue.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TE!

01/21/2010 CHNOLOGIES - 34

3.4.3. DEF_VAR_EVENT

" Prototype (multithread): DWORD DEF_VAR_EVENT_PTH (
UCHAR LifeTime,

UCHAR Type,
UCHAR EventNumber,
USHORT AccessKey) ;

. Prototype: DWORD DEF_VAR_EVENT (UCHAR LifeTime,
UCHAR Type,
UCHAR EventNumber,
USHORT AccessKey) ;

" Parameters:
— LifeTime: event life duration.
» 0, the event is temporary and will not be generated at
the next occurrence.
» 1, the event is permanent and will be reactivated at
every occurrence.
— Type: the event type to be defined.
» 0, no event will be configured.
» 1, the event will be generated at the variable
transmission.
» 2, the event will be generated at the variable
receiving.
— EventNumber: event number associated with the variable.
— AccessKey: access key of the variable associated with this
event. This value is given by a previous call to the
FIND_ VAR _BY_ID() or FIND_VAR _BY_NAME() functions.

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

. Utility: define an event for variable transmission or receiving.

3.5. BUS ARBITRATOR

3.5.1. BA_PROG

. Prototype (multithread) : DWORD BA _PROG_PTH (char*
PathToBaAsciiFile) ;
" Prototype: DWORD BA_PROG (char* PathToBaAsciiFile) ;

" Parameter:
- PathToBaAsciiFile: pointer to a character string that contains
the complete path name of the bus arbitrator ASCII file.

" Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E hlp —

01/21/2010 TECHNOLOGIES - 35

" Utility: this function downloads a bus arbitrator program in the
PC/WorldFIP board memory. This program comes from an ASCII file and
its format is given in paragraph 2.7.5. This function does not allow the bus
arbitrator to start up. For that you need the START_BA() function.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TE!

01/21/2010 CHNOLOGIES -36

3.5.2. START_BA

. Prototype (multithread): DWORD START_BA_PTH (USHORT
Padding) ;
. Prototype: DWORD START_BA (USHORT Padding) ;

. Parameter:
- Padding: identifier used by the bus arbitrator for its idle
frame.

" Return value: unsigned integer (32 bits) of which the value may be a

system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

. Utility: starts the bus arbitrator. Note: this function must be used only
if the bus arbitrator is in the STOPPED state. On the other hand, if the bus
arbitrator is still STOPPED after a START_BA(), try once again (not more
than once).

3.5.3. STOP_BA

. Prototype (multithread): DWORD STOP_BA PTH () ;
. Prototype: DWORD STOP_BA () ;

" Parameters: this function has no parameters.

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

. Utility: stops the bus arbitrator. Note: this function is only used if the
bus arbitrator state is different to STOPPED or STARTING.

3.5.4. CONTINUE_BA

" Prototype (multithread): DWORD CONTINUE_BA PTH (UCHAR
NewMacroCycle,
USHORT NewProgramAdd) ;
. Prototype: DWORD CONTINUE_BA (UCHAR
NewMacroCycle,
USHORT NewProgramAdd) ;
. Arguments:
— NewMacroCycle: Unused in this version, must be set to 0.
Reserved for future use.
- NewProgramAdd: restart address of the bus arbitrator. This
address is given by the sum of the "pAdditionnallnfo" value from
the READ_EVENT() function (if the event type is "bus
arbitrator") and the value "16".

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -37

" Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: this function allows the bus arbitrator to pass again into an
activate state. Note: This function must only be used if the bus arbitrator
state is PENDING.

3.5.5. BA_REPORT

. Prototype (multithread): DWORD BA_REPORT_PTH (UCHAR*
pStatus) ;
. Prototype: DWORD BA_REPORT (UCHAR* pStatus) ;

. Parameter.
— pStatus: pointer to a byte that contains the bus arbitrator
state. The PC/WorldFIP board is a bus arbitrator when bit 3 is set
to 1. The values set in this byte are the following (see paragraph
2.7.1 for more information about these states):

> 8, SENDING;

9, STOPPED;

10, STARTING;

11, IDLE;

12, MSG_WND;

13, APER_WND;

14, WAITING;

15, PENDING;

Other values: the PC/WorldFIP board is not a

bus arbitrator.

>
>
>
>
>
>
>
>

" Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: this function allows the user to find out the current state of the
bus arbitrator. This function is essential for managing the set of bus
arbitrator functions.

3.5.6. CHANGE_BA

. Prototype (multithread): DWORD CHANGE_BA PTH (USHORT
NewProgramAdd) ;
. Prototype: DWORD CHANGE_BA (USHORT NewProgramAdd) ;

" Parameter:
- NewProgramAdd: next bus arbitrator macrocycle start
address.

" Return value: unsigned integer (32 bits) of which the value may be a

system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

FIPENGINE - USER

MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h | —

01/21/2010 TECHNOLOGIES - 38

" Utility: indicates the next bus arbitrator address. By default, the
DOWNLOAD_CNF() function uses the address of the first bus arbitrator
program contained in the "cnf" file. The GET_BA_PROGRAM_ADDR()
function indicates the first and second program addresses. By calling the
CHANGE_BA() function with one of the address returned by
GET_BA_PROGRAM_ADDR(), we can toggle from a program to the
other. The toggling occurs at the end of the running macrocycle.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -39

3.6. TOOLS FUNCTIONS

3.6.1. PURGE

Prototype (multithread): DWORD PURGE_PTH (UCHAR Parameter
Prototype: DWORD PURGE (UCHAR Parameter) ;

Parameter.
— Parameter: this byte empties the queue.
» 0 to 8: message transmission queue (recall: 0 means
aperiodical transmission; 1 to 8 means periodical
transmission).
» 9: aperiodical variable transmission request queue.

Return value: unsigned integer (32 bits) of which the value may be a

system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

Utility: empties the specified queue.

3.6.2. FIND_MSG_BY_ID

Prototype (multithread): BOOL FIND_MSG_BY _ID_PTH (USHORT

Sourceldentifier,

UCHAR SourceSegment,

USHORT Destldentifier,

UCHAR DestSegment,

char *Name,

USHORT* pAccessKey) ;
Prototype: BOOL FIND_MSG_BY_ID (USHORT

Sourceldentifier,

UCHAR SourceSegment,
USHORT Destldentifier,
UCHAR DestSegment,
char *Name,
USHORT* pAccessKey) ;
Parameters:
— Sourceldentifier: source identifier of the message.
— SourceSegment: segment number of the previous identifier.
— Destldentifier: destination identifier of message.
— DestSegment: segment number of the previous identifier.
— Name: name of the message found.
— pAccessKey: pointer to an integer that contains the message
access key if the function returns TRUE and if the message is a
transmitted type. If the message is a received type, the access
key is only known by a READ_EVENT() function. In the case of
a received message, the function sets the value by pointed to by
“‘pAccessKey” to a meaningless value equal to Oxffff.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

[
LM2-FDL-1-001 E j =

01/21/2010 TECHNOLOGIES -40

" Return value: TRUE if the message is found. Otherwise FALSE.

" Utility: gives the message access key and other information from the
message identifiers

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -41

3.6.3. FIND_MSG_BY_NAME

. Prototype: (multithread): BOOL FIND_MSG_BY_NAME_PTH (
char* Name,

USHORT* pAccessKey,
USHORT* pSourceldentifier,
UCHAR* pSourceSegment,
USHORT* pDestldentifier,
UCHAR* pDestSegment) ;

. Prototype: BOOL FIND_MSG_BY_NAME (char* Name,

USHORT* pAccessKey,
USHORT* pSourceldentifier,
UCHAR* pSourceSegment,
USHORT* pDestldentifier,
UCHAR* pDestSegment) ;

= Parameters:

— Name: pointer to a character string that contains the
message name (32 characters max).

— pAccessKey: pointer to an integer that contains the message
access key if the function returns TRUE and if the message is a
transmitted type. If the message is a received type, the access
key is only known by a READ_EVENT() function. In the case of
a received message therefore, the function sets the value
pointed to by pAccessKey to a meaningless value equal to Oxffff.
— pSourceldentifier: pointer to an integer that contains the
message source identifier if the function returns TRUE. This
integer has no meaning if the function returns FALSE.

- pSourceSegment: pointer to an integer that contains the
segment number of the previous identifier if the function returns
TRUE. This integer has no meaning if the function returns
FALSE.

— pDestldentifier: pointer to an integer that contains the
message destination identifier if the function returns TRUE. This
integer has no meaning if the function returns FALSE.

— pDestSegment: pointer to an integer that will contain the
segment number of the previous identifier if the function returns
TRUE. This integer has no meaning if the function returns
FALSE.

. Return value: TRUE if the message is found. Otherwise FALSE.

. Utility: gives the message access key and other information, such as
the source and destination identifiers, from the message name.

3.6.4. FIND_VAR BY_ID

= Prototype (multithread): BOOL FIND_VAR_BY_ID_PTH (USHORT

Identifier,

USHORT* pAccessKey,
char* Name,

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h 1 —

01/21/2010 TECHNOLOGIES

-42

USHORT* pValueLength,
UCHAR* pStatus);

. Prototype: BOOL FIND_ VAR _BY_ID (USHORT Identifier,
USHORT* pAccessKey,
char* Name,

USHORT* pValueLength,
UCHAR* pStatus);

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -43

] Parameters:

— ldentifier: variable identifier.

— pAccessKey: pointer to an integer that contains the variable
access key if the function returns TRUE. This integer has no
meaning if the function returns FALSE.

— Name: name of the variable found. Be careful! The user must
allocate enough bytes for this information. The length of a name
cannot exceed MAX_NAME_LENGTH.

— pValuelLength: pointer to an integer that contains the length
of the variable value. This length does not include the
PDU_LENGTH, PDU_TYPE and refreshment bytes.

— pStatus: pointer to an integer that allows the user to find out
whether time status is required or not:

if b0 is set, refreshment status is required;

if b1 is set, promptness status is required.

. Return value: TRUE if the message is found. Otherwise FALSE.

" Utility: gives the variable access key and other information, from the
variable identifier.

3.6.5. FIND_VAR BY_NAME

. Prototype (multithread): BOOL FIND_VAR BY NAME_PTH (
char* Name,

USHORT* pAccessKey,
USHORT™* pldentifier,
USHORT* pValueLength,
UCHAR* pStatus) ;

. Prototype: BOOL FIND_VAR_BY_NAME (char* Name,

USHORT* pAccessKey,
USHORT"* pldentifier,
USHORT* pValueLength,
UCHAR* pStatus) ;

] Parameters:

— Name: pointer to a character string that contains the variable
name (32 characters max).

— pAccessKey: pointer to an integer that contains the variable
access key if the function returns TRUE. This integer has no
meaning if the function returns FALSE.

— pldentifier: pointer to an integer that contains the variable
identifier if the function returns TRUE.

— pValuelLength: pointer to an integer that contains the length
of the variable value. This length does not include the
PDU_LENGTH, PDU_TYPE and refreshment bytes.

— pStatus: pointer to an integer that allows the user to find out
whether time status is required or not:

if b0 is set, refreshment status is required;

if b1 is set, promptness status is required.

. Return value: TRUE if the message is found. Otherwise FALSE.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h l —

01/21/2010 TECHNOLOGIES -44

" Utility: gives the variable access key and other information, from the
variable name.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TE!

01/21/2010 CHNOLOGIES -45

3.6.6. GET_BA_PROGRAM_ADDR

= Prototype (multithread): void GET_BA_PROGRAM_ADDR_PTH (
USHORT* pAdd1,
USHORT* pAdd2) ;
= Prototype: void GET_BA_PROGRAM_ADDR(USHORT*

pAdd1,
USHORT* pAdd2) ;

. Parameters:
— pAdd1: first bus arbitrator macrocycle address. This program
was downloaded with the "cnf* file by the DOWNLOAD_CNF()
function.
— pAdd2: second bus arbitrator macrocycle address. This
program was downloaded with the "cnf" file by the
DOWNLOAD_CNF() function.

. Return value: none.

. Utility: returns the addresses of the two bus arbitrator macrocycles.

They can be used as parameters with the CHANGE_BA() and the
CONTINUE_BA() functions. If the pAdd1 or pAdd2 pointer is null when the
function returns, it means there is no associated macrocycle.

3.6.7. GET_TRANSMISSION_QUEUE

. Prototype (multithread): DWORD
GET_TRANSMISSION_QUEUE_PTH(UINT Mode,
QUEUE_INFO*
pVarList,
DWORD
AllowedVarNb,
UINT™

pVarNbRequired) ;
" Prototype: DWORD GET_TRANSMISSION_QUEUE (UINT
Mode,
QUEUE_INFO*
pVarList,
DWORD
AllowedVarNb,
UINT™
pVarNbRequired) ;

" Parameters:
— Mode: indicates which kind of queue is to searched for:
» 0: aperiodical messages,
» 1: periodical messages,
» 2: aperiodical variables.
— pVarlList: pointer to an array of QUEUE_INFO structures
(described in Appendix). This structure contains the identifer of
the variable and the number of the associated transmission

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h p =
TECHNOLOGIES

01/21/2010 - 46

channel. The user has to allocate the array. "AllowedVarNb" is
the size of the allocated buffer. If this size large enough, the
array will be filled. Whatever the "AllowedVarNb" value, the
required count is returned in the "pVarNbRequired" parameter.

- AllowedVarNb: size of the array (in QUEUE_INFO units)
allocated by the user.

— pVarNbRequired: count of QUEUE_INFO structures to be
returned.

" Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: allows to the user to know the variables enabled for
messages or aperiodical transfers and the associated channel. This
information in useful to:
— affect the "ChannelNb" parameter of the FIP_ WRITE_MSG()
function
— check that a variable has an aperiodical variable request
transmission channel before using the SEND_APER() function.

3.6.8. MEDIUM_CONTROL

. Prototype (multithread): DWORD MEDIUM_CONTROL_PTH
(UCHAR Command, UCHAR* pStatus) ;

. Prototype: DWORD MEDIUM_CONTROL (UCHAR Command,
UCHAR* pStatus) ;

. Parameters:
— Command: command to apply:
» 0: to obtain the communication medium status byte.
» 1:to erase the reception and transmission errors (only
the ErX and EtX bits are concerned).
» 2:toreset medium 1 line drivers.
3: to reset medium 2 line drivers.
4: to enable medium 1 and disable medium 2.
5: to enable medium 2 and disable medium 1.
6: to enable both medium 1 and 2.
» 7: to run the test mode (loops transmission on
reception).
— pStatus: pointer to the returned status byte.
The status byte format is the following (bit activated when 1):
b7 = Er2 (reception error channel 2)
b6 = Er1 (reception error channel 1).
b5 = Ew2 (watchdog error channel 2).
b4 = Ew1 (watchdog error channel 1).
b3 = Et2 (transmission error channel 2).
b2 = Et1 (transmission error channel 1).
b1 = Val2 (channel 2 enabled).
b0 = Val1 (channel 1 enabled).

>
>
>
>

YVVVYVYYVVVYVYYVY

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h lp —

01/21/2010 TECHNOLOGIES -47

. Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: permits to the user to perform commands, and to retrieve
medium(s) state after the command application. For more details, see the
chapter 2.8.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h ;p —
TE!

01/21/2010 CHNOLOGIES -48

3.6.9. ERROR_MESSAGE

. Prototype: DWORD ERROR_MESSAGE (DWORD ErrorCode) ;

] Parameters:
— ErrorCode: error code in.

" Return value: unsigned integer (32 bits) of which the value may be a
system error or a library error. In the latter case, the possible return values
are given by the FipEngine header file. A null value indicates success.

" Utility: gives the error message associated with the error code. If the
error code is a system error code, the language is the system language. If
the error code is a library error code, the language is the same as the
library.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h "‘p =
TECHNOLOGIES -49

01/21/2010

4, APPENDIX

4.1. DETAILED FORMAT OF "CNF" FILES FROM FIPDESIGNER VERSION 3.

This format is compatible with the DOWNLOAD_CNF() function and depends

on the following C structures:

typedef struct

/l unused with DOWNLOAD_CNF()

/10 U 31,25 kb/s

/110 1Mb/s

/2 102,5Mbls

/I parameter for unit time used for the durations:

/I 0 11 100ps at 31,25 kb/s; 62.5us at 1Mb/s; 50us at 2.5

/' 1 11 400us at 31,25 kb/s; 250us at 1Mb/s; 200us at 2.5
//2 1 1000us at 31,25 kb/s; 625us at 1Mb/s; 500us at 2.5

/I 3 1 4000us at 31,25 kb/s; 2500us at 1Mb/s; 2000us at

unsi gned short frequence,
vi t esse,
tslot,
Mb/s.
Mb/s.
Mb/s.
2.5 Mb/s.

turn around,

/I this parameter is usually set to 0.

/I parameter used for the turn-around time:

/I turn-around time (us)= turn around x a + 1.25 x Thit
/I where:

/I at 31.25 kbit/s:

I a = 128; Tbit = 32us; min value for turn around
= 3,
Il max value for turn around = 63.
/I at 1Mb/s, if "clktype" = O:
1l a = 0.625; Tbit = 1 ps; min value for turn around
=14;
Il max value for turn around = 63.
/I at 1Mb/s, if "clktype" = 1:
I a = 4; Thit = 1 ps; min value for turn around = 3;
Il max value for turn around = 63.
/I at 2.5Mbl/s:
1! a = 1.6; Thit = 0.4 ys; min value for turn around
=20;
I max value for turn around = 63.
Il see clktype parameter in STATION.
si | ence, [/l parameter used for the silence time:
/I silence time (us)= a + (silence x b)
/I (note: (silence x b) will be use for the bus arbitrator
election time
/I and start-up time)
/l where
/I at 31.25 kbit/s:
1! a = 64pus; b = 1024us; min value for silence = 4;
Il max value for silence = 63.
/[at 1Mb/s, if "clktype" = O:
I a = 40ps; b = 5 ys; min value for silence = 22;
Il max value for silence = 63.
/I at 1Mb/s, if "clktype" = 1:
1! a = 40ps; b = 32 us; min value for silence = 4;
Il max value for silence = 63.
/I at 2.5Mbl/s:
I a = 32pus; b = 12.8 ys; min value for silence = 5;
I max value for silence = 63.
nmessages, /I maximum number of messages that the configuration
can handle.

/I must be a power of 2.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h "‘p =
TECHNOLOGIES

01/21/2010 - 50

// from 16 to 2048 for DOWNLOAD_CNF().
vari abl es, /I maximum number of variables that the configuration
can handle.
/I must be a power of 2.
// from 16 to 2048 for DOWNLOAD_CNF().
ba, // bus arbitrator program size in kilowords.
/l usually set to 5 kw for current program.
/I Could be more, there are 128kw on PC/FIP board.
I/l See paragraph 2.7.3 for more information.
i dbourrage; // padding identifier. Usually set to 0x7530

long ba_electinme, //parameter for bus arbitrator election time,
/I see the previous silence field for (silence x b) value,
/I bus arbitrator election time (us)= ba_electime x

(silence x b)
Il min value for ba_electime = 518
I max value for ba_electime = 8708

ba_startinme; // parameter for bus arbitrator start up time,

/] see the previous silence field for (silence x b) value,

/l bus arbitrator start up time (us) =

I ba_startime x (silence x b)

/I the bus arbitrator start-up time shall be superior to the
greatest value

/I of the bus arbitrator election time of any workstation on
the network.

/I The recommended value for ba_startime is 8712.

char cl kt ype, /I 0 or 1, used for modify the duration span of silence and
turn around.
/I usually set to 0 for small duration value.
franet ype; /I 1 1) WorldFIP frame delimitors and CRC
/I 0 [J FIP frame delimitors and CRC

unsi gned short carte_adr, /l unused with DOWNLOAD_CNF()
i nterruption, // unused with DOWNLOAD_CNF()
nMeni r e; /l unused with DOWNLOAD_CNF()
} STATI ON; /I structure that holds the general WorldFIP parameters

typedef struct
unsi gned short i dentifieur; // WorldFIP variable identifier

char noni 30], [/ variable name (null-terminated)
format[30]; //unused with DOWNLOAD_CNF()

short pdu, /I PDU; usually set to 0x40 for a user variable and
/I 0x50 for a network management variable.
| ongueur, /I length of user data field: 1 up to 125 bytes if

refreshment status is
/ required; 1 up to 126 bytes if not required.
nmsg_channel , // 0 [J the aperiodical message transmission queue n°0
// has been defined on this variable.
/' 1 up to 8 [the aperiodical message transmission
queue n°lupto 8
/I has been defined on this variable.
/I other values: no queue has been defined

evenenent ; /I event number associated with the variable (optional)
char type, /I 1 1J consumed variable
/I 0 [0 produced variable
refresh, /I 1 [refreshment required
/I 0 [no refreshment
pronpt, /[1 [0 promptness required

// 0 O no promptness

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

h L p_=
TECHNOLOGIES -51

nessagerie; /[If bO = 1, the aperiodical message transmission

requests are

1! authorised on this variable. In this case, the
"type" field
I must be 0.

/I'If b1 = 1, the message receiving is authorised on this
variable,

1l i.e. it will be possible to receive any message
whose
1l two first bytes of the destination address field is
equal to
1 the identifier value of this variable.
/I'If b6 = 1, the aperiodical variable transmission requests
are
1 authorised on this variable. In this case, the
"type" field
1 must be 0.
unsi gned short period_r, /I refreshment period in milliseconds
period_p; /I promptness period in milliseconds
} VAR ABLE; /I structure that holds a variable configuration
typedef struct
{
unsi gned short source, /I message source identifier (note: segment = 0 in this
version 3)
desti nati on, // message destination identifier (note: segment = 0)
val ue_ptr, // unused
evenenent ; /I event number associated with the message (optional)
char noni 30], /I message name (null-terminated)

format[30], //unused with DOWNLOAD_CNF()
acqui ttenment, // 0, messaging service without acknowledgement;

/I 1 with acknowledgement.

node, /I 0 (1 periodical message transmission.
1! Be careful, the database must have one
produced variable
I with a msg_channel field set from 1 up to 8.
/I 1 [J aperiodical message transmission.
I Be careful, the database must have one
produced variable
1l with a msg_channel field set to 0.
/I note: the mode field is unused for a received message.
type; /I 1 [transmitted message.
1! Be careful, the database must have one
produced variable
I with a "messagerie" field with b0 = 1. This
variable is the
I same than the source identifier of the message.
/10 [received message.
1! Be careful, the database must have one
variable (produced
1l or consumed) with a "messagerie” filed with b1
=1.
I This variable is the same than the destination
identifier of
I the message.
} MESSAGE; /I structure that holds a message configuration.
typedef struct
char op_code[15]; /I character string that contains the instruction

} | NSTRUCTI ON;

/I structure that holds a bus arbitrator instruction

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

h . —
‘ TECHNOLOGIES -52

/l in ASCII format.

The configuration file format is the following:

Header: 11 bytes that holds the "LOCOM 3.00" (and null character)
character string.
Bus arbitrator origin: 128 bytes.
Bus arbitrator first sequence:
» Ashort integer (2 bytes) that holds n number of instructions.
» n INSTRUCTION structures.
Bus arbitrator second sequence:
» Ashort integer (2 bytes) that holds n number of instructions.
» n INSTRUCTION structures.
Message configurations:
» Ashort integer (2 bytes) that holds n number of message.
» n MESSAGE structures.
General configuration of the device: one STATION structure.
Variable configurations:
» Ashort integer (2 bytes) that holds n number of variable.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h ,_p =
TECHNOLOGIES

01/21/2010

- 53

4.2. THE MULTI THREAD POSIX LIBRARY

POSIX is the acronym for Portable Operating System Interface (for Unix).

It is the name of a family of related standards specified by the IEEE to define
the application programming interface (API) for software compatible with
variants of the Unix operating system, although the standard can apply to any
operating system.

POSIX Ic is associated with Threads extensions (IEEE Std 1003.1¢c-1995)

The latest version is known as IEEE Std 1003.1, 2004 Edition.

The library is included in the most of LINUX distributions.

To use the Pthreads library, you must include the file "pthread,h”. 1f you use
semaphores, you must too include the file "semaphore.h” and if you use the
function sched yield, you must too include the file "sched.h".

To load the library, you must use the option -Ipthread in your makefile.
Generally, the functions of the library return an integer, 0 if successful or an
error code like:

-ESRCH : No process matches the specified process ID.

-EDEADLK: Deadlock avoided.

-EINVAL : Invalid argument

-EAGAIN: Resource temporarily unavailable.

-EPERM: Operation not permitted

-ENOMEM: No memory available

Threads created by the same process share its resources but each maintains its
own stack pointer, scheduling properties, registers, set of pending and blocked
signals, specific data.

Because threads share resources, synchronization and protection mechanisms
are necessary. The Pthread library implement mechanisms like: mutex,
semaphores, condition variables, barriers, spinlocks, read write locks.

You can access by the Linux command man the documentation for each
function.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TE!

01/21/2010 CHNOLOGIES - 54

4.2.1. CREATION/DESTRUCTION

Once created via the function pthread create by a main process, a thread may
create other threads.

A thread may be terminated in several different ways:

- the thread has finished to run its routine.

- the thread has called pthread_exit.

- the thread is canceled by another thread via the pthread cancel.

_the main process is terminated.

Creation/Destruction

Data Structure

pthread _t Thread identifier
pthread_attr t Thread Attributes Structure

Functions
int Creates a thread. If return is successful, the
pthread_create(pthread t* tid, const, thread with identifier tid starts running the
pthread_attr t* tattr, void*(*start routine) |function start routine.If tattr is NULL, the
(void®), void* arg) default attributes are used.
void The calling thread terminates. If a process
pthread_exit(void *status) is waiting for the end of this thread on a

pthread_join function, it will get status as
argument at return.

int The calling thread wants the thread of
pthread _cancel(pthread t thread) identifier thread to be cancelled.
int This function indicates to the application
pthread_detach(pthread t tid) that storage for the thread #id can be
reclaimed when the thread terminates.

int This function allows to enable or disable
pthread setcancelstate(int state, int cancellation.

*oldstate)

void At this point, the calling thread can be
pthread_testcancel(void) cancelled by another thread.

int This function allows to set the cancellation
pthread_setcanceltype(int type, int type: deferred or asynchronous.

*oldtype)

int The calling thread is going to wait for the

pthread_join(pthread_t tid, void **status) |termination of the thread with identifier #id.
The thread must not be detached.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -55

4.2.2. UTILITIES

Utilities

Data Structure

pthread _equalt(pthread t tidl, pthread t
tid2)

sched param This structure contains scheduling
parameters like sched priority.
Functions
pthread t This function returns the identifier of the
pthread_self(void) calling thread.
int This function returns 0 when #id1 and tid?2

are equal.

int
pthread once(pthread once t
*once_control, void (*init_routine)(void))

This function allows to perform an
initialisation routine for a thread. It can be
called only once.

pthread_setschedparam((pthread_t tid, int
policy, const struct sched_param *param)

int This function causes the current thread to

sched yield(void) yield its execution in favor of another
thread.

int This function is used to modify the

scheduling policy and scheduling
parameters of a thread. Supported policies
are SCHED FIFO, SCHED RR and
SCHED OTHER.

int
pthread getschedparam((pthread t tid, int
*policy, struct sched_param *param)

This function is used to set the scheduling
policy and scheduling parameters of a
thread.

i nt
pthread_setschedprio((pthread t tid, int
prio)

This function is used to set the scheduling
priority of a thread.

int
pthread_kill(pthread_t tid, int sig)

This function send the signal sig to the
thread #id. The thread tid must be in the
same process as the calling thread.

int
pthread_sigmask(int how, const sigset t
*new, sigset t *old)

This function is used to modify or examine
the signal mask of the calling thread.

int
pthread_atfork(void (*prepare) (void, void
(*parent) (void), void (*child) (void))

This function declares fork() handlers that
are called before and after
fork() in the context of the thread that called

fork().

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h ,_p =
TECHNOLOGIES

01/21/2010 - 56

4.2.3. THREAD SPECIFIC DATA

Threads can own private data. Each thread private data item is associated with a
key.

Thread Specific Data

Data Structure

pthread key t

Functions

int This function allocates a key used to
pthread key create(pthread key t *keyl, identify the thread-specific data in a process.
void (*destructor)(void®));

int This function destroys an existing thread
pthread key delete(pthread key t key); -specific data key.

int This function is used to bind specific data
pthread_setspecific(pthread key t key, and key.

const void *value),

void* This function is used to get the specific data
pthread_getspecific((pthread key t key), associated with a key.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

h . —
‘ TECHNOLOGIES -57

4.2.4. ATTRIBUTES

Attributes are used to give at threads a behaviour different from the default
behaviour. Attributes are used at thread creation time. An attribute object is
opaque and cannot be accessed directly.

Attributes have default values. So, if the structure pthread attr t is NULL at
the creation of a thread, default values are used.

Atributes Default Value
scope PTHREAD_SCOPE_PROCESS
detachstate PTHREAD_CREATE_JOINABLE
stackaddr NULL
stacksize 0
priority 0
inheritsched PTHREAD_EXPLICIT_SCHED
schedpolicy SCHED_OTHER
guardsize PAGESIZE

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES

- 58

Thread Attributes

Data Structures

pthread_attr t

Thread attributes.

Functi

ons

pthread_attr_init(pthread_attr t *tattr);

Initialize the attributes to their default
values.

int pthread_attr_destroy(pthread_attr_t *“tattr);

Destroy the attributes and free the
allocated resources.

int
pthread_attr_setdetachstate(pthread_attr t
*tattr, int detachstate);

This function sets the thread with tattr
attributes in the detached state.

int
pthread_attr_getdetachstate(pthread_attr t
*tattr, int *detachstate);

This function gets the thread create state
which can be detached or joined.

int
pthread_attr_setguardsize(pthread_attr t
*tattr, size_t guardsize);

With this function we can set the guardize
attribute of the tattr object.

int
pthread_attr_getquardsize(pthread_attr t
*tattr, size_t * guardsize);

With this function we can get the
guardsize attribute of the tattr object.

int
pthread_attr_setscope(pthread_attr t* tattr,
int scope);

This function sets the scope of a thread
either process private (intraprocess) or
system wide (interprocess)

int
pthread_attr_getscope(pthread_attr_t* tattr,
int* scope);

This function gets the scope of a thread.

int
pthread_attr_setschedpolicy(pthread_attr_t*
tattr, int policy);

This function sets the scheduling policy:
SCHED FIFO, SCHED RR(Round-
Robin) or SCHED OTHER.

int
pthread_attr_getschedpolicy(pthread_attr_t*
tattr, int* policy);

This function gets the scheduling policy.

int
pthread_attr_setinheritsched(pthread_attr _t*
tattr, int inheritsched);

This function sets the inherited scheduling
policy: and priority if inheritsched value is
PTHREAD INHERIT SCHED, the thread
inherits scheduling policy and priority
from its creator process and if
inheritsched value is

PTHREAD EXPLICIT SCHED,
scheduling policy and priority to use are in
the attributes structure.

int
pthread_attr_getinheritsched(pthread_attr_t*
tattr, int* inheritsched);

This function gets the inherited scheduling
policy: and priority

int

pthread_attr_setschedparam(pthread_attr_t*

This function sets the scheduling
parameters.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES -59

tattr, const struct sched _param param);

int

pthread_attr_getschedparam(pthread_attr_t*

tattr, const struct sched_param™ param);

This function gets the scheduling
parameters.

int
pthread_attr_setstacksize(pthread_attr_t*
tattr, size_t size);

This function sets the thread stack size (in
bytes).

The constant PTHREAD STACK MIN
defines the amount of stack space required
to start a thread.

int
pthread_attr_getstacksize(pthread_attr t*
tattr, size_t *size);

This function gets the thread stack size (in
bytes).

int
pthread_attr_setstack(pthread_attr_t* tattr,
void* stackaddr, size t stacksize);

This function sets the thread stack address
and size.

int
pthread_attr_getstack(pthread_attr_t* tattr,
void™™ stackaddr, size_t *stacksize);

This function gets the thread stack address
and size.

int

pthread_attr_setconcurrency(int new_level);

This function is used to inform the system
of the desired concurrency level.

int

pthread_attr_getconcurrency(void);

This function returns the current
concurrency level.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h [p —
TE!

01/21/2010 CHNOLOGIES -60

4.2.5. CONDITION VARIABLES

With condition variables it is possible to block threads until a particular
condition is true. Condition variables are usually used together with a mutex
lock.

The scheduling policy determines how blocking threads are awakened.

The attributes for condition variables must be set and initialized before the
condition variables can be used or default values are used.

pthread cond wait() blocks the calling thread until the specified condition is
signalled. This routine should be called after mutex is locked.

pthread cond_signal routine is used to signal another thread waiting on the
condition variable. This routine should be called before the associated mutex is
unlocked.

pthread _cond_broadcast should be used if more than one thread is in a
blocking wait state.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES

- 61

The condition variables

Data Structures

pthread_condattr t

Attributes for the condition variable.

pthread cond t*

Condition variable.

Functions

pthread_condattr_init(pthread_condattr_t
*cattr);

Initialize attributes to their default values.

int
pthread_condattr_destroy(pthread_condattr_t
*cattr);

Destroy the attributes and free the
allocated resources.

int
pthread_condattr_setpshared(pthread condat
tr_t *cattr, int pshared);

This function sets the scope of a either
process private (intraprocess) or system
wide (interprocess)

int
pthread_condattr_getpshared(pthread_condat
tr_t cattr, int* pshared)

This function gets the current value of the
scope.

int
pthread_condattr_setclock(pthread_condattr_
t *cattr, clockid_t clock_id)

With this function we can set the clock
attribute. The clock attribute is the
clockID of the clock used to measure the
timeout service of
pthread cond timedwait: it can be
CLOCK REALTIME or

CLOCK _MONOTONIC.

int
pthread_condattr_getclock(pthread_condattr_
t *cattr, clockid_t clock_id)

With this function we can get the clock
attribute value..

pthread _cond_init(pthread_cond_t* cv, const
pthread_condattr_t* cattr)

With this function, we initialize the
condition variable. If cattr is NULL, the
default attributes are used.

int
pthread_cond_wait(pthread_cond_t* cy,
pthread _mutex_t* mutex)

This function blocks until the condition
cv 1s signaled.

int ' This function unblocks one thread that is
pthread_cond_signal(pthread_cond_t* cv,) blocked on the condition variable cv.
Int This function blocks until the condition

pthread_cond_timedwait (pthread_cond_t* cv,
pthread_mutex_t* mutex, const struct
timespec* abstime)

cv is signaled. or the time abstime is
reached.

int
pthread_cond_reltimedwait_np(pthread_cond
_t*cv, pthread_mutex_t* mutex, const struct
timespec* abstime)

This function blocks until the condition
cv is signaled. or the time abstime passed.

int pthread_cond_broadcast(pthread_cond_t*
cv)

Calling this function unblocks all threads
blocked on the condition.

int

pthread_cond_destroy(pthread_cond_t* cv)

This function destroys all the resources
used by the condition cv.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES

- 62

4.2.6. SEMAPHORES

To use semaphores you must include the file "semaphore.h”. The semaphores
of the POSIX threads library are counting semaphores. The semaphore count is
initialized to the number of free resources. Threads then atomically increment
the count when resources are added (function sem post) and decrement the
count when resources are removed (return from sem_wait or sem_trywait).

Semaphores

Data Structures

sem_t Semaphore structure
Functions
int Initializes a semaphore.If pshared is

sem_init(sem_t *sem, int pshared, uinsigned int
value)

zero, the semaphore cannot be shared
between processes.

int
sem_post(sem_t *sem)

Increments the semaphore pointed to by
sem.

int
sem_wait(sem_t *sem)

The calling thread is blocked until the
semaphore count becomes greater than
Zero.

int
sem_trywait(sem_t *sem)

This function is the nonblocking
version of the precedent.

int
sem_destroy(sem_t *sem)

Destroys the semaphore.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h ,_p =
TEi

01/21/2010 CHNOLOGIES -63

4.2.7. SPINLOCKS

Spin locks are a low level synchronization mechanism. If a thread requires a
spin lock already held by another thread, it spins in a loop to test if the lock is

freed.
Spinlock
Data Structures

pthread_spinlock t Spin lock structure.

Functions
int Initializes a spin lock to an unlocked
pthread spin_init(pthread_spinlock t *lock, int |state. Possible values for pshared are:
pshared); - PTHREAD PROCESS SHARED

- PTHREAD PROCESS PRIVATE.

int Use this function to lock a spin lock. If

pthread _spin_lock(pthread spinlock t *lock); |the lock is free, the calling thread gets
it. If the lock is not free, the calling
thread is blocked until it is free.

int This function is a non blocking version
pthread _spin_trylock(pthread_spinlock t of the precedent. If the lock is not free,
*lock), it return the error code EBUSY.

int The calling thread releases the locked
pthread_spin_unlock(pthread spinlock t spin lock.

*lock),

int The spin lock is destroyed.

pthread spin_destroy(pthread_spinlock t

*lock),

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E hlp —

01/21/2010 TECHNOLOGIES - 64

4.2.8. MUTEX

Mutex objects implement mutual exclusion locks. They ensure that only one
thread at a time executes a critical section of code.

Mutex must be initialized before use and destroyed after. They have default
attributes which can be modified.

Only one thread can lock or own a mutex variable at any time. When several
threads compete for a mutex, the losers block at the call pthread mutex lock
but a no blocking call is possible with pthread mutex_trylock. Some functions
allow to use a timeout.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E
01/21/2010

‘ TECHNOLOGIES

- 65

Mutex Attributes

Data Structures

pthread mutexattr t

Mutex attributes.

Functions

int
pthread _mutexattr_init(pthread mutexattr t
*mattr),

Initialize a mutex attributes structure with
the default values for pshared, type,
protocol, robustness:

PTHREAD PROCESS PRIVATE
PTHREAD MUTEX DEFAULT
PTHREAD PRIO NONE

PTHREAD MUTEX STALLED NP
prioceiling is inherited from the existing
priority range.

int Destroys the mutex attributes and free
pthread _mutexattr _destroy(pthread _mutexatt | allocated resources..

r_t *mattr)

int Sets the pshared attribute at the value

pthread mutexattr setpshared(pthread mute

xattr_t *restrict mattr,
int *restrict pshared);

PTHREAD PROCESS PRIVATE or
PTHREAD PROCESS SHARED.

int

pthread _mutexattr getpshared(pthread mute

xattr_t *restrict mattr,
int *restrict pshared);

Gets the pshared attribute.

int

pthread mutexattr_settype(pthread mutexatt

r_t *attr, int type);

Sets the mutex type attribute at the
specified value. Possible values are:
PTHREAD MUTEX NORMAL,
PTHREAD MUTEX ERRORCHECK,
PTHREAD MUTEX RECURSIVE,
PTHREAD MUTEX DEFAULT.

int

pthread _mutexattr gettype(pthread mutexatt

r_t *restrict attr,
int *restrict type);

Gets the mutex #ype attribute.

int

pthread _mutexattr_setprotocol(pthread _mut

exattr_t *attr, int protocol)

Sets the mutex protocol attribute at the
specified value. Possible values are:
PTHREAD PRIO NONE,

PTHREAD PRIO INHERIT,
PTHREAD PRIO PROTECT.

int

pthread _mutexattr_getprotocol(const
pthread mutexattr t *restrict attr,

int *restrict protocol)

Gets the mutex protocol attribute.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E hlp —

01/21/2010

TECHNOLOGIES - 66

int

pthread mutexattr _setprioceiling(pthread _m
utexatt t *attr, int prioceiling)

int pthread _mutexattr_getprioceiling(const
pthread _mutexatt t *restrict attr,

int *restrict prioceiling),

Sets the mutex priorityceiling attribute.
The priority ceiling defines the minimum
priority level at which the critical section
guarded by the mutex is executed.

int pthread _mutexattr getprioceiling(const
pthread mutexattr t *restrict mutex,
int *restrict prioceiling);

Returns the priority ceiling in
priorityceiling.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E

01/21/2010

‘ TECHNOLOGIES

- 67

Mutex

Data Structures

pthread _mutex t

Mutex structure

Functions
int
pthread _mutex_init(pthread mutex_t *restrict
mp,

const pthread_mutexattr_t *restrict mattr);

Initializes the mutex pointed at by mp
to its default value if mattr is NULL.

int
pthread _mutex_lock(pthread mutex t *mutex),;

This function locks the mutex pointed
to by mutex. Thecalling thread becomes
the mutex owner if it is free or it blocks
until the mutex is free.

int
pthread _mutex unlock(pthread mutex_t
*mutex);

This function unlocks the mutex
referenced by mutex. How the mutex is
freed depends on the mutex's type
attribute.

int
pthread_mutex_trylock(pthread mutex _t
*mutex);

This function attempts to lock the
mutex pointed by mutex and returns
immediately.if the mutex is already
locked.

int

pthread _mutex_timedlock(pthread _mutex_t
*restrict mutex,

const struct timespec *restrict abs_timeout);

This function attempts to lock the
mutex pointed by mutex and returns
after timeout is reached.if the mutex is
already locked.

int

pthread _mutex_reltimedlock np(pthread mutex
_t *restrict mutex,

const struct timespec *restrict rel_timeout);

This function acts like the precedent but
waits until a specified amount of time
instead of a time.

int

pthread mutex destroy(pthread mutex t *mp);

Destroys the mutex and free the
allocated resources.

int

pthread _mutex_setprioceiling(pthread_mutex_t
*restrict mutex,

int prioceiling, int *restrict old ceiling);

This function modifies the priority
ceiling.

nt pthread _mutex_getprioceiling(const
pthread _mutex_t *restrict mutex, int *restrict

prioceiling);

This function gets the priority ceiling.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h lp —

01/21/2010 TECHNOLOGIES - 68

4.2.9. READ-WRITE LOCKS

A read-write lock is an object that can be locked in read or write mode. So concurrent
reads and exclusive writes to a protected shared resource are possible.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E

01/21/2010

‘ TECHNOLOGIES

- 69

Read-Write Locks

Data Structures

pthread_rwlockattr t

Read-Write lock structure.

pthread rwlock t

Read-Write lock attributes.

Functions

int
pthread rwlockattr init(pthread rwlockattr t
*attr),

Initialize a read-write lock attribute
structure.

int
pthread _rwlockattr _destroy(pthread rwlockattr
_t *attr),;

Destroys a read-write lock attribute
structure.

int
pthread_rwlockattr setpshared(pthread rwlock
attr_t *attr, int pshared);

Use this function to set the process-
shared read-write lock attribute. The
pshared lock attribute can have one of
the value:

PTHREAD PROCESS SHARED or
PTHREAD PROCESS PRIVATE.

int

pthread_rwlockattr getpshared(const
pthread _rwlockattr t *restrict attr,

int *restrict pshared),;

Use this function to get the process-
shared read-write lock attribute.

int

pthread _rwlock_init(pthread rwlock t
*restrict rwlock,

const pthread_rwlockattr t *restrict attr);

Initialize a read-write lock rwlock with
the attributes attr. If attr is NULL, the
default read-write lock attributes are
used.

int
pthread _rwlock_rdlock(pthread rwlock t
*rwlock);

This function applies a read lock on the
read-write lock object rwlock.

int

pthread _rwlock _timedrdlock(pthread rwlock t
*restrict rwlock,

const struct timespec *restrict abs_timeout);

This function applies a read lock on the
read-write lock object rwlock but if the
lock cannot be acquired without
waiting, this wait will be terminated
when the specified timeout expires..

int
pthread_rwlock_tryrdlock(pthread rwlock t
*rwlock),

This function tries to apply a read lock
on the read-write lock object rwlock
but if the lock cannot be acquired it
does not block but fails.

int
pthread _rwlock wrlock(pthread rwlock t
*rwlock),

This function applies a write lock on
the read-write lock object rwlock.

int
pthread _rwlock trywrlock(pthread rwlock t
*rwlock),

This function tries to apply a write lock
on the read-write lock object rwlock
but if the lock cannot be acquired it
does not block but fails.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h lp

01/21/2010 TECHNOLOGIES -70

int

pthread _rwlock_timedwrlock(pthread rwlock t
*restrict rwlock,

const struct timespec *restrict abs_timeout);

This function applies a write lock on
the read-write lock object rwlock but if
the lock cannot be acquired without
waiting, this wait will be terminated
when the specified timeout expires..

int
pthread _rwlock unlock (pthread rwlock t
*rwlock),

This function releases a lock on the
read-write lock object rwlock.

int
pthread rwlock destroy(pthread rwlock t
**rwlock),

This function destroys a read-write lock
and free its resources.

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E

01/21/2010

‘ TECHNOLOGIES

- 71

4.2.10. BARRIERS

We use barriers when several tasks have to be completed before another task begins.

The barrier must first be created with the number

of threads that are synchronizing on the

barrier. When the last thread reaches the barrier, all the waiting threads on the barrier

resume their execution.

Barriers

Data Structures

pthread barrierattr t

Attributes for barriers

pthread barrier t

Barrier structure

Function

S

int
pthread_barrierattr_init(pthread _barrierattr t
*attr),

This function initializes barrier
attributes.

int
pthread_barrierattr setpshared(pthread barrier
attr_t *attr, int pshared),

This function sets the process-shared
attribute in a pthread barrierattr t
object. The process-shared attribute can
have the value:

PTHREAD PROCESS PRIVATE or
PTHREAD PROCESS SHARED.

int

pthread_barrierattr getpshared(const
pthread barrierattr t *restrict attr,

int *restrict pshared);

This function gets the process-shared
attribute in a pthread barrierattr t
object.

int
pthread barrierattr _destroy(pthread barrieratt
r_t *attr);

Use this function to destroy an
initialized pthread barrierattr t object.

int

pthread_barrier init(pthread barrier t
*barrier, const pthread barrierattr t *restrict
attr, unsigned count);

This function allocates resources for a
barrier and initialize its attributes.

If attr is NULL, default attributes are
used (process-share value is PTHREAD
PROCESS PRIVATE).

Count is the maximum number of
threads expected to wait at the barrier.

int
pthread_barrier wait(pthread barrier t
*barrier),

The calling thread blocks until the
required number of threads have called
this function.

int
pthread _barrier _destroy(pthread_barrier t

Use this function to destroy a barrier
and free its resources.

*barrier),

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E h _p —
TECHNOLOGIES

01/21/2010 -72

4.3. THE PROGRAMS OF EXAMPLE

Samplel is a sequential program. It uses the card 1 configured with the file "Station1.cnf”.
After it has configured and connected the card, the program starts the bus arbitrator, reads
the variable var2, writes 111 in the variable varl, displays the events, sends the message
" ABCDEF " to the station2 and then loops until the user has entered the key 'q' or the
station 2 has sent a message. By this time, the program reads and displays var2 and the
state of the bus arbitrator.

Samplel must be launched with a second station configured with "Station2.cnf” (for
example, Sample5 or Sample5 pth).

Launch from a terminal window in the "Samplel” directory: "./Samplel”.

Sample2 is a multi-threaded program. The main process creates two threads running the
same function fipengine. This process creates too a semaphore, a spinlock and a barriier
then it waits until the end of threads 1 and 2.on a pthread join.

The barrier blocks the two threads until the bus arbitrator has started. Then, the two stations
start a loop with a local counter. The thread 1 reads and displays the state of the bus
arbitrator and waits for the semaphore. When unblocked, it reads var2 and displays its
value. After, it writes the value of the counter in varl.

The thread 2 associated with card 2 runs a similar process but it increments the semaphore.
So, in a tour of loop, each card reads and writes the associated variables.

Here are traces of this program execution

Card 1 is waiting semaphore

Thread 2 k = 251 Var Status= 0xa0 Trame :0x40 0x5 0x0 Oxfe Oxfe Oxfe Oxfd
Thread 2 Var Value :0 254 254 254] Refresh:0x5

Thread 2 Value k= 251

Card 2 Send semaphore

Thread 1 k = 251 Var Status= 0xa0 Trame :0x40 0x5 0x0 Oxfc Oxfc Oxfc Oxff
Thread 1 Var Value :0 252 252 252] Refresh:0x5

Thread 1 Value k= 251

BA Status c

BAis MSG_WND

Card 1 is waiting semaphore

Thread 2 k = 250 Var Status= 0xa0 Trame :0x40 0x5 0x0 Oxfc Oxfc Oxfc Oxfd
Thread 2 Var Value :0 252 252 252] Refresh:0x5

Thread 2 Value k= 250

Loop Thread2 sends k =250

Card 2 Send semaphore

Thread 1 k = 250 Var Status= 0xa0 Trame :0x40 0x5 0x0 Oxfc Oxfc Oxfc Oxff
Thread 1 Var Value :0 252 252 252] Refresh:0x5

Thread 1 Value k= 250

Loop Thread1 sends k =250

BA Status 8

BAis SENDING

FIPENGINE - USER MANUAL

This document may noyt be used, copied or redistributed without authorisation of HLP Technologies

LM2-FDL-1-001 E hlp —

01/21/2010 TECHNOLOGIES -73

Sample5 is a sequential and interactive program. The user must enter the card number and
this card is configured with the associated .cnf file. Most of FipEngine commands can be
executed in this program but the user must take care of consistency, (for example, you must
connect the network before starting the bus arbitrator and before any other action).

Sample5 pth is the multi-threaded version of sample5.. The main process creates only one
thread.

FIPENGINE - USER MANUAL

	1. WorldFIP tools library FipEngine Overview
	1.1. Introduction
	1.2. Software and material required
	1.3. FipEngine Components

	2. General information FOR usING FipEngine functions
	2.1. For older Windows version users
	2.2. Sequential and multi-threaded modes
	2.3. Start and stop library
	2.4. Variables
	2.4.1. Periodical variables
	2.4.2. APeriodical variables
	2.4.2.1. How to transmit an aperiodical variable
	2.4.2.2. How to receive an aperiodical variable

	2.5. MessageS
	2.5.1. How to transmit A message
	2.5.2. How to receive message

	2.6. HANDLING EVENTS
	2.6.1. Predefined events
	2.6.2. Event definition
	2.6.3. Event read

	2.7. Handling the bus arbitrator
	2.7.1. Bus arbitrator states
	2.7.2. Programming the bus arbitrator
	2.7.3. Size of bus arbitrator instructions in BOARD memory
	2.7.4. Example of programming the bus arbitrator
	2.7.5. Format of the bus arbitrator programming files

	2.8. Handling the communication mediumS
	2.8.1. Status Byte format
	2.8.2. Available commands
	2.8.3. Communication management
	2.8.3.1. Principle

	2.9. Definitions, ERROR codes

	3. FipEnginE function COMPLETE description
	3.1. Start/stop configuration
	3.1.1. START_FIP_ENGINE
	3.1.2. STOP_FIP_ENGINE
	3.1.3. DOWNLOAD_CNF
	3.1.4. START_COMMUNICATION

	3.2. Variables
	3.2.1. FIP_READ_VAR
	3.2.2. FIP_WRITE_VAR
	3.2.3. SEND_APER

	3.3. Messages
	3.3.1. FIP_READ_MSG
	3.3.2. FIP_WRITE_MSG

	3.4. Events
	3.4.1. IS_EVENT
	3.4.2. READ_EVENT
	3.4.3. DEF_VAR_EVENT

	3.5. Bus arbitrator
	3.5.1. BA_PROG
	3.5.2. START_BA
	3.5.3. STOP_BA
	3.5.4. CONTINUE_BA
	3.5.5. BA_REPORT
	3.5.6. CHANGE_BA

	3.6. Tools functionS
	3.6.1. PURGE
	3.6.2. FIND_MSG_BY_ID
	3.6.3. FIND_MSG_BY_NAME
	3.6.4. FIND_VAR_BY_ID
	3.6.5. FIND_VAR_BY_NAME
	3.6.6. GET_BA_PROGRAM_ADDR
	3.6.7. GET_TRANSMISSION_QUEUE
	3.6.8. MEDIUM_CONTROL
	3.6.9. ERROR_MESSAGE

	4. Appendix
	4.1. Detailed format of "cnf" files from FipDesigner version 3.
	4.2. The multi thread POSIX library
	4.2.1. creation/Destruction
	4.2.2. Utilities
	4.2.3. Thread specific data
	4.2.4. Attributes
	4.2.5. Condition variables
	4.2.6. Semaphores
	4.2.7. Spinlocks
	4.2.8. Mutex
	4.2.9. Read-Write Locks
	4.2.10. Barriers

	4.3. The programs of example

